
HAL Id: hal-02291389
https://hal.archives-ouvertes.fr/hal-02291389

Submitted on 19 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lower Bound for (Sum) Coloring Problem
Alexandre Gondran, Vincent Duchamp, Laurent Moalic

To cite this version:
Alexandre Gondran, Vincent Duchamp, Laurent Moalic. Lower Bound for (Sum) Coloring Problem.
2019. �hal-02291389�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/231946075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02291389
https://hal.archives-ouvertes.fr

Lower Bound for (Sum) Coloring Problem

Alexandre Gondran
ENAC, French Civil Aviation University, Toulouse, France

alexandre.gondran@enac.fr

Vincent Duchamp
ENAC, French Civil Aviation University, Toulouse, France

vincent.duchamp@alumni.enac.fr

Laurent Moalic
UHA, University of Upper Alsace, Mulhouse, France

laurent.moalic@uha.fr

The Minimum Sum Coloring Problem is a variant of the Graph Vertex Coloring Problem, for
which each color has a weight. This paper presents a new way to find a lower bound of this problem,
based on a relaxation into an integer partition problem with additional constraints. We improve
the lower bound for 18 graphs of standard benchmark DIMACS, and prove the optimal value for 4
graphs by reaching their known upper bound.

1 Introduction

The Minimum Sum Coloring Problem MSCP is a variant of the Graph Vertex Coloring Problem (GVCP),
with weights associated to colors. This problem can be applied to various domains such as scheduling, resource
allocation or VLSI design [1, 2].

Given an undirected graph G = (V,E) with V a set of n vertices and E ⊂ V 2 a set of edges, graph vertex
coloring involves assigning each vertex with a color so that two adjacent vertices (linked by an edge) feature
different colors. An equivalent formulation is to consider a coloring as a partition of G into subsets of vertices
so that two adjacent vertices not belong to the same subset[3].

The GVCP consists in finding the minimum number of colors (or equivalently the minimum number of
subsets), called chromatic number χ(G), required to color (or equivalently to partition) the graph G.

The MSCP is a variant of GVCP, in which each color has a cost equals to the integer that represents the
color. The objective of MSCP is to minimize the sum of the cost of the coloring, called chromatic sum of G and
denoted Σ(G). Figure 1 gives an example of MSCP from Jin and Hao [4] on a graph with n = 9 vertices and
shows the difference between the two problems.

Figure 1: Example of graph for MSCP from Jin and Hao [4]. The left coloring uses 3 colors (integers 1, 2 and 3).
It is an optimal solution of GVCP and the chromatic number χ(G) = 3. Moreover, its sum coloring
cost is equal to 18. The right coloring uses one more color (integers 1, 2, 3 and 4) but its sum coloring
cost is equal to 15, which is the chromatic sum of G: Σ(G) = 15.

More precisely, one possible formulation of the MSCP is the following :

1

(MSCP)

Min. fΣ(V) =

n∑
l=1

l|Vl| (1)

s.c. ∪l=1..nVl = V (2)

Vl ∩ Vk = ∅, ∀(l, k), l 6= k (3)

|Vl| ≥ |Vl+1|, ∀l = 1..n− 1 (4)

{i, j} * Vl, ∀(i, j) ∈ E, ∀l = 1..n (5)

Vl ⊂ V ∀l = 1..n (6)

We denoted V = (V1, V2..., Vn) the partition of G (constraints (2) and (3)) into n sets with n, the number of
vertices of G. For all 1 ≤ i ≤ n, each Vi is called color class. To be as general as possible, we do not precise
the number k of colors used, we only know that 1 ≤ k ≤ n. Then the number of colors used in a coloring is
equal to the number of none empty color classes : k = |{Vi ∈ V | |Vi| ≥ 1}|. Constraint (5) indicates that two
adjacent vertices cannot be in the same color class. That is the coloring constraint. Constraint (4) forces the
color classes to be ordered from the largest to the smallest size. With this convention, the objective function
can be expressed as equation (1). An optimal sum coloring of graph G, noted V∗, has its objective function
equals to the chromatic sum: fΣ(V∗) = Σ(G).
MSCP is an NP-hard problem[5] and exact methods to solve it are effective only on small instances or specific

graphs. For general graphs, we use heuristics to get a sub-optimal solution[6]. It provides an upper bound of
the optimal solution. We can compare it to a lower bound to estimate the quality of the solution.

This paper presents a new way to find lower bounds for this problem. We obtain it by relaxing MSCP into
an Integer Partition Problem (IPP). A similar approach has recently be use by Lecat, Lucet and Li [7]. They
find a lower bound, called LBMΣ, using the notion of motif that improve largely the best lower bound of the
literature (DIMACS benchmarks [8]). This paper improves this lower bound by counting the maximal number
of independent sets of maximal size in a graph. An Independent Set (IS) or stable set is a set of vertices of G,
no two of which are adjacent. A color class is by definition an IS. Others approaches designed to find the lower
bound for MSCP are proposed in [3, 4, 9].

Experiments on standard benchmarks DIMACS [8] of graph instances show that we improve the lower bound
for several graphs and we sometimes prove their optimal value by reaching their known upper bound.

In the following sections, we first present how we relax MSCP to an IPP (Section 2). In Section 3, we detail
a new way of ordering integer partitions, and we use it to solve exactly our relaxed problem. Section 4 shows
how to extend this lower bound to GVCP. We show and analyze our results in Section 5, and then we conclude.

2 Relaxation as an integer partition problem

2.1 Integer partitions

We relax the problem of sum coloring MSCP into a problem of integer partition, denoted IPPΣM , with the
same objective function but with less constraints.

An integer partition is a way of writing a positive integer n as a sum of other positive integers. We say that
the vector a = (ai)1≤i≤n ∈ Nn is a partition of n if :

(IP)

n∑
i=1

ai = n

ai ≥ ai+1, ∀i = 1..n− 1

We arbitrarily choose to rank ai in decreasing order. Partitions can be graphically visualized with Young
diagrams [10] or Ferrer diagrams. Figure 2 represents the partition of the integer 12 = 4 + 4 + 3 + 1 + 0 + 0 + 0 +
0 + 0 + 0 + 0 + 0. The vector of this partition is: a = (4, 4, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0) or simply noted a = (4, 4, 3, 1)
because the two first lines have four squares, the third line, three squares and the last one, one square.

Figure 2: Example of Young diagram for the partition of integer 12 into a sum of four integers : 4, 4, 3 and 1
(12 = 4+4+3+1). Each line corresponds to one positive integer of the partition. Integers are ranked
in descending order.

2

2.2 Definition of IPPΣM

Instead of considering a set partition (or equivalently vertices partition), we focus on the cardinality of each set
and we study an integer partition of the number n = |V |, corresponding to the number of vertices. We note for
each vertices set Vi, its cardinality ai = |Vi|. The objective function (1) of MSCP becomes

∑n
i=1 iai.

By this way, the two first constraints of MSCP (constraints (2) and (3)) imply
∑n
i=1 ai = n. Constraint (4)

of MSCP is still valid with the new notations: ai ≥ ai+1. We represent a coloring with Young diagram where
each square represents a vertex. The number of color used is the number of lines. Squares in the same line are
in the same color class. Figure 3 represents Young diagrams of the two colorings presented in Figure 1.

Figure 3: Young diagrams of two colorings of the same graph as in Figure 1. Each square represents a vertex.
Squares on the same line share the same color. The objective function value of MSCP is calculated
by counting the number of squares for each line:

∑n
i=1 iai.

The stability number of G, noted α(G), is the size of the maximum IS. It indicates the maximum number of
columns of a Young diagram that it is possible to use for a coloring, therefore ai ≤ α(G). Moreover, we will
define m as an upper bound of the maximum number of color classes of size α(G) which can be in a coloring.
Then, we can add an extra constraint : |{ai|ai = α(G)}| ≤ m or equivalently if m < n to am+1 ≤ α(G) − 1.
Finding α(G) is a NP-hard problem [11] and counting all maximal IS is #-P complete [12]. Therefore, there
are no polynomial-time algorithm able to solve these problems, unless P = NP . However, the graph size for
which it is possible to solve them exactly in a reasonable time (less a few minutes) is around 1000 vertices for
random graphs with 0.5 density by running a solver such as MoMC [13], the state-of-art exact maximum clique
algorithm. We define α an upper bound of α(G), for which the above constraints are still true: ai ≤ α and
|{ai|ai = α}| ≤ m. If MoMC takes too much time to compute α(G), then a possible upper bound of the largest
IS size, α, is the highest positive integer, k, verifying: |{v ∈ V, dG[v] ≥ k}| ≥ k with dG[v] the degree of the
vertex v in G, the complement graph of G1. Another upper bound is the number of colors used for a vertex
coloring of G not necessarily optimal.

The chromatic strength of a graph G, noted s(G), is the minimum number of colors used in all the optimal
colorings of MSCP . It indicates the minimum number of lines of a Young diagram that are needed for a
coloring. We note s a lower bound of s(G) and we notice that :

s(G) ≥ χ(G) ≥
⌈

n

α(G)

⌉
(7)

Indeed the chromatic number χ(G) is at least a lower bound of s(G) because an optimal coloring of MSCP

is at least a legal coloring for GVCP. Moreover, a simple lower bound of χ(G) is
⌈

n
α(G)

⌉
or at least

⌈
n
α

⌉
. The

number of coefficients of a not null (or equivalently the number of lines of Young diagram) is at least higher
than s(G) and therefore higher than s, i.e. |{ai|ai ≥ 1}| ≥ s or equivalently as ≥ 1 because (ai) is a decreasing
suite of integer.

1Notice that the maximum IS of a graph G is the maximum clique of G.

3

Given a graph G = (V,E), knowing n = |V | its size, α an upper bound of its stability number, s a lower
bound of its chromatic strength and m, an upper bound of the maximum number of color classes of size α, we
define IPPΣM problem as:

(IPPΣM)

Min. fΣM (a) =

n∑
i=1

iai (8)

s.c.

n∑
i=1

ai = n (9)

ai ≥ ai+1, ∀i = 1..n− 1 (10)

ai ≤ α, ∀i = 1..n (11)

|{ai|ai = α}| ≤ m (12)

as ≥ 1 (13)

a = (ai)1≤i≤n ∈ Nn (14)

IPPΣM depends only of four integers: n, α, s and m. We denote ΣM the optimal objective function value
of one of its optimal partition, a∗: fΣM (a∗) = ΣM . Therefore, ΣM is function of these four parameters:
ΣM(n, α, s,m).

Theorem 1. IPPΣM is a relaxation of MSCP , that is, ΣM(n, α, s,m) is a lower bound of Σ(G):

ΣM ≤ Σ(G) (15)

Proof 1. The fourth constraint of MSCP (coloring constraint (5)) imply constraints (11-13), then IPPΣM is
a relaxation of MSCP .

2.3 Analysis

Note that if we remove the constraint (13) from IPPΣM (or equivalently if we fix m at +∞), we would get a
problem equivalent to the one used by Lecat et al. [7] to find the LBMΣ lower bound: LBMΣ = ΣM(n, α, s,m =
+∞) with α = α(G), if it is known and :

s =

{
χ(G) if it is known⌈

n
α(G)

⌉
otherwise

(16)

Therefore, ΣM is an improvement of LBMΣ, obtained by using the integer m corresponding to the maximum
number of IS of size α(G) that is possible to use in a coloring of G graph.

LBMΣ ≤ ΣM ≤ Σ(G) (17)

For this reason, we need to find the smallest possible value of m to have the highest possible value of ΣM . To
obtain our value of m, we define a new graph called the maximum independent set graph, noted G̃ = (Ṽ , Ẽ) as
follow.

Definition 1. Let a graph G = (V,E), we call the maximum independent set graph of G, the graph
G̃ = (Ṽ , Ẽ) build as follow :

• each vertex of Ṽ is a maximum independent set2 of G;

• it exists an edge e = (u, v) ∈ Ẽ between two independent sets u ∈ Ṽ and v ∈ Ṽ , if and only if u and v
have at least one vertex w ∈ V of G in common (i.e. u ∩ v 6= ∅); we said that u and v are incompatible
because both can not be part of the same coloring of G.

Theorem 2. An optimal sum coloring V∗, of a graph G (i.e. an optimal solution of MSCP) can not have
more than α(G̃) color classes of size α(G) :

|{Vi ∈ V∗, |Vi| = α(G)}| ≤ α(G̃)

Proof 2. Finding the maximum IS of G̃ corresponds to find the maximal number of maximal ISs compatibles
in G. In others words, α(G̃) is the maximum number of IS of size α(G) that are possible to include in a same
coloring of G. This is true not only for sum coloring problem but also for all coloring problems.

Therefore, we use in experimental tests, when it is possible to compute it:

m = α(G̃) (18)

2independent set of size α(G)

4

3 Solving IPP

3.1 Ordering integer partitions

We defined a relaxation problem, IPPΣM , of MSCP . Our aim is to solve exactly this problem in order to
provide a lower bound to MSCP . We define an order between integer partitions corresponding to the objective

function f(a) =
n∑
i=1

iai. Given a partition a, we define a set of successor partitions if we move down only one

square in the corresponding Young diagram of a by the following rule :

Data: n
Fonction successor(a):

succ← ∅
foreach i = 1..n− 1 do

if ai 6= 1 ∧ ai+1 < ai then
j ← i+ 1
while aj ≥ ai − 1 do

j ← j + 1
b← change(a, i, j) // we note : b← a⊕ (i, j)
succ← succ ∪ {b}

return succ
Algorithm 1: Function that return all the successors of the partition a.

The change function, noticed ⊕ operator, is defined as follows :

Data: n
Fonction change(a,i,j):

foreach k = 1..n do
bk ← ak

bi ← ai − 1
bj ← aj + 1
return b

Algorithm 2: Function that return a neighbor partition of a, just two values of b differ from a; we note
b← a⊕ (i, j)

Figure 4 illustrates the successor operator with Young diagram. Algorithm 1 shows that it is possible to move
down the last square of each line if :

• the following line has not the same number of squares; it is why the red square of first line of Figure 4 can
not move.

• the line has not an unique square; it is why the orange square of last line of Figure 4 can not move.

When it is possible to move down a square (case of blue and green squares of Figure 4), the square takes last
place of the first possible line. Blue square of Figure 4 can take the place in the just following line. But green
square of Figure 4 must go two lines down.

Remark 1. By construction, if a is an admissible solution of IPPΣM , then all of a’s succesor interger partitions
are also an admissible solution of IPPΣM . In other words, by noting Ω(IPPΣM) the set of all admissible solutions
of IPPΣM : if a ∈ Ω(IPPΣM), then succesor(a) ⊂ Ω(IPPΣM).

Remark 2. If a is an admissible solution of IPPΣM without succesor i.e. successor(a) = ∅, then it means
that a is the column partition a = (1, ..., 1︸ ︷︷ ︸

n

).

5

Figure 4: Illustration for the way we find the two successors of a partition a: a1 and a2. From a, we move a
square from a line i(= 2 or 3) to the closest line j where ai > aj ; j = 4.

We define symmetrically the predecessor function :

Data: n, α, s, m
Fonction predecessor(a):

pred← ∅
foreach i = 2..n− 1 do

if [(i ≤ s ∧ ai > 1) ∨ (i > s ∧ ai > 0)]
∧ [(i ≤ m ∧ ai−1 < α) ∨ (i > m ∧ ai−1 < α− 1)]
∧ ai+1 < ai then
j ← i− 1
while j 6= 1 ∧ aj ≥ aj−1 do

j ← j − 1
b← change(a, i, j)
pred← pred ∪ {b}

return pred
Algorithm 3: Function that returns all the predecessors of the partition a.

Figure 5 illustrates the predecessor operator with Young diagram. Algorithm 3 shows that it is possible to
move up the last square of each line i > 1 if :

• the line just below (i + 1) has not the same number of squares; it is why the red squares of the two first
lines of partition a of Figure 5-up-right can not move.

• the line just above (i − 1) has strictly less than α squares if i − 1 ≤ m; it is why the red square of the
third line of partition a of Figure 5-up-right can not move.

• the line just above (i−1) has strictly less than α−1 squares if i−1 > m; this constraint and the previous
one define the hashed area (forbidden area) of Figure 5-up-right.

• the square of line s is alone on its line; it is why the red square of last line of partition a of Figure 5-up-right
can not move. This mandatory square is noted in bold on Figure 5-up-right.

When it is possible to move a square up (case of blue and green squares of partition b of Figure 5-center), the
square takes last place of the first possible line (line 3 and 5 respectively).

6

Figure 5: Illustration of the way we find a predecessor of a partition. The partition a (up-right figure) has no
predecessor because the hashed area is the forbidden area and the bold square (last line) is mandatory
(a square must be place on it). The partition b has two possible predecessors, b1 and b2, by moving
blue square or respectively green square to line 3 or respectively line 5.

Remark 3. By construction, if b ∈ Ω(IPPΣM), then predecessor(b) ⊂ Ω(IPPΣM).

Theorem 3. If a partition b is a successor of the partition a (respectively b is a predecessor of a), so that
b← a⊕ (i, j), therefore j > i (resp. i < j) and

f(b) = f(a) + j − i > f(a) (resp. < f(a)) (19)

Proof.

f(b) =

n∑
k=1

kbk =
∑

k 6=i; k 6=j

kbk + ibi + jbj

=
∑

k 6=i; k 6=j

kak + i(ai − 1) + j(aj + 1) =

n∑
k=1

kak − i+ j

= f(a)− i+ j

If we list the partitions of an integer, we can compare their costs (of sum coloring) using this theorem. We
get a comparison relation between partitions which is similar to the comparison relation between motifs used
in [7] (definition 4).

As an example, the Figure 6 presents a graph with n = 9 vertices for which it exists an unique maximum IS
of size 6 (α = α(G) = 6 and m = 1). Moreover we take s equals to the chromatic number χ(G) = 3. Figure 7
details all the integer partitions of n = 9 in the form of Young diagram as well as their order. The optimal
solution of IPPΣM is the integer partition without valid predecessor.

Lemme 1. For all a and b ∈ Ω(IPPΣM), it exists a set of k > 1 integer partitions ci ∈ Ω(IPPΣM), with
i = 1...k so that c1 = a, ck = b and ci+1 ∈ predecessor(ci) or ci+1 ∈ successor(ci).

7

Figure 6: Graph (left figure) with n = 9 vertices with α = α(G) = 6 and m = 1 (it exists an unique maximum
IS of size 6) and we take s = χ(G) = 3. Then, the constraints on the Young diagram (right figure)
imply that only one line can have 6 squares, the others has at most 5 square (i.e. no squares in the
hatched area) and it must have at least one square on the third line (i.e. red square is mandatory).

Proof. It means that the graph of integer partitions (the vertices are the integer partitions and an edge links
two integer partitions a and b if and only if a ∈ predecessor(b) or a ∈ successor(b)) is connexe. It is evident
because it exists always a path between an integer partition and the column integer partition: (1, ..., 1︸ ︷︷ ︸

n

) where

n is the integer to partition.

Theorem 4. The optimal integer partition of IPPΣM is the integer partition without predecessor.

Proof. If a is an optimal integer partition of IPPΣM and has at least one predecessor b ∈ predessor(a), therefore
fΣM (b) < fΣM (a) by theorem 3 with b ∈ Ω(IPPΣM). It refutes the optimality of a.

3.2 Resolution of the relaxed problem IPPΣM

The optimal integer partition of IPPΣM is the integer partition without predecessor.

3.2.1 Without constraint as ≥ 1

We define (IPP0) an intermediate problem corresponding to IPPΣM but without the constraint (13): as ≥ 1.
Let a∗0 the optimal partition of (IPP0); this partition is a function of n, α and m.

By definition, a∗0(n, α,m) satisfies the constraints of (IPP0) and has no valid predecessor among these con-
straints. To have the best cost (which implies no predecessor), the partition contains as many lines (i.e. color
classes) of maximal size (equal to α) as possible. m corresponds to the maximum number of lines of size α, then
we take :

m = min

(⌊
n

α(G)

⌋
, #IS(α(G)), α(G̃)

)
where #IS(k) is the number of ISs of G with size equals to k a positive integer. α(G), #IS(α(G)) and α(G̃)
can be calculated with the open source code MoMC3 [13]. If it is too time-consuming, we take: m =

⌊
n
α

⌋
.

The remaining integer n−m× α uses then as many independent sets of size α− 1 as possible.

Theorem 5. Let be the euclidean division of n−mα by (α− 1) :

n−mα = q × (α− 1) + r (20)

with q and r < α− 1 two positive integers, therefore the optimal partition of (IPP0) is :

a∗0 = (

m︷ ︸︸ ︷
α, α, ..., α,

q︷ ︸︸ ︷
α− 1, ..., α− 1, r) (21)

and the optimal objective function is equal to :

ΣM0(n, α,m) = fΣM (a∗0)

=
m(m+ 1)

2
α+

q(2m+ q + 1)

2
(α− 1) + (m+ q + 1)r (22)

3code available on: https://home.mis.u-picardie.fr/∼cli/EnglishPage.html

8

Figure 7: Young Diagrams of all possible integer partitions succeeding a graph G. Each arrow indi-
cates a successor of a partition and the number indicates the additional cost function (of sum coloring)
to pass from a partition to the other.

An young diagram of the optimal partition a∗0 is given is Figure 8.

9

Figure 8: Young diagram of the optimal partition a∗0 of (IPP0).

Figure 9 gives an example of optimal partition with n = 16, α = α(G) = 4 and m = 2. Notice that in the

worst case, when m has its maximal value equals to
⌊

n
α(G)

⌋
, then q = 0 so a∗0 = (

α(G)︷ ︸︸ ︷
bn/α(G)c..., bn/α(G)c, r).

Figure 9: Illustration of how to find the best partition given n, α = α(G) and m. The length of a line can not
be over α(G). The number of lines with maximum lengthy can not be over m.

3.2.2 With constraint as ≥ 1

If we know that we have to use at least s lines (i.e. colors), we have two possibilities :

• the previous solution already uses s lines, i.e. m+ q + 1 ≥ s. Then the optimal solution of (IPP0) is also
the optimal solution of IPPΣM , so :

ΣM = ΣM0(n, α,m) = fΣM (a∗0)

• the previous solution uses less than s lines. Then we start with one vertex in s different sets and we solve
(IPP0) with the remaining vertices (n − s) to find the solution. An illustration is given in Figure 10.
Theorem 6 gives the cost of the optimal partition.

10

Figure 10: Illustration of how to find the best partition with n = 16, α = 4, m = 2 and s = 7. We add two
partitions: the first one is a column of s squares; the second one is the optimal partition of one
(IPP0) problem with n′ = n− s squares, α′ = α− 1 and m′ = m.

Theorem 6. Let • be the line by line addition of two partitions. Let four integer n, α, s,m defining IPPΣM .
The optimal partition of IPPΣM noted a∗ is equal to:

a∗(n, α, s,m) = a1×s • a∗0(n− s, α− 1,m) (23)

with a1×s = (

s︷ ︸︸ ︷
1, 1, ..., 1) the partition of the number s into ones and with a∗0(n−s, α−1,m) the optimal partition

of (IPP0) with n− s, α− 1 and m parameters, therefore:

ΣM =
s(s+ 1)

2
+ ΣM0(n− s, α− 1,m) (24)

4 Lower bound for graph coloring

The relaxation used for MSCP can also be applied for GVCP. GVCP is a special case of MSCP for which all
colors have the same cost, then let be a possible formulation of GVCP :

(GV CP)

Min. fχ(V) = |{Vl | |Vl| > 0, ∀l = 1..n}| (25)

s.c. Eq. (2− 5)

Vl ⊂ V ∀l = 1..n

This formulation differs from MSCP just by the objective function, that counts the number of non-empty
partitions. Therefore, the relaxation into an integer partition problem becomes :

(IPPχ)

Min. fχ(a) = |{ai|ai > 0, ∀i = 1..n}| (26)

s.c. Eq. (9− 12)

a = (ai)1≤i≤n ∈ Nn

Again IPPχ differs from IPPΣM just by the objective function, that corresponds to the number of lines in
Young diagram and because Eq. (13) is useless. In this case, the optimal objective function value is equal to :

LBχ = fχ(a∗) = m+ q + [r 6= 0] (27)

with m, q and r given by the Thm.5 and a∗ the optimal solution of IPPχ and [] is Iverson bracket : [r 6= 0] = 1
if r 6= 0 is true and equals 0 otherwise. LBχ is a lower bound of χ(G) and its value depends only of three
integers: n, α and m.

5 Results

5.1 Procedure

To compute our lower bound ΣM , we use G the complementary graph of G. We run MoMC solver to find α(G),
the size of the maximal clique of G. We also save the list of all the maximal IS of G to compute #is and to

11

build G̃. Algorithm 4 recall the global procedure to compute ΣM .

Data: G, n

α←
{
α(G) if it is not too time-consuming with MoMC solver,
α(G) otherwise.

#is←
{

#is(α) if it is not too time-consuming with MoMC solver,⌊
n
α

⌋
otherwise.

Build G̃, the graph of the maximum IS.

α̃←
{
α(G̃) if it is not too time-consuming with MoMC solver,
#is otherwise.

m← min
(⌊

n
α

⌋
, #is, α̃

)
q ←

⌊
n−mα
α−1

⌋
r ← n−mα− q × (α− 1)

s←
{
χ(G) the best known lower bound of χ(G) if it is known,⌈
n
α

⌉
otherwise.

ΣM ←
{

ΣM0(n, α,m) if m+ q + 1 ≥ s
s(s+1)

2
+ ΣM0(n− s, α− 1,m) otherwise

Algorithm 4: Procedure to compute ΣM .

5.2 Empirical Results and Analysis

We tested our procedure on some graph instances of DIMACS and COLOR benchmarks, which are frequently
used for performance evaluation of MSCP algorithms [4]. For several instances, the list of maximum indepen-
dent set takes too much computational time to be found. There are two possible reasons for this :

• G is too dense and MoMC needs too much time to find a maximum clique.

• the number of maximum cliques is too high and we can’t compute their graph.

In our tests, we reuse open source code (MoMC and Cliquer) written in C and we write a script coded in
Python 4. The results were obtained with an Intel Xeon E5 2.50GHz processor - 8 cores and 16GB of RAM.

In the Table 1, we show a set of results, focused on graphs where our lower bound could be computed. We
compare our lower bound, ΣM , to Σold (the best lower bound known according to [6], [7], [3]) and LBMΣ (lower
bound described in [7], that we calculate or update for several graphs). The three first columns indicate the
graph instance name, its number of vertices and its density. Columns 4 and 5 give the maximum independent
set of the graph, α(G) and the time (in second) required to compute it with the MoMC solver. The two next
columns show the number of maximum independent set of the graph, #is and the time (in second) required to
compute it with the MoMC solver or the Cliquer solver. Columns 8 and 9 indicate, m, the maximum number
of compatibles independent sets of the graph and the time (in second) required to compute it with the MoMC
solver. If #is is too high (> 5000), then the computation of m is not done because it would take too long.
Column 10 gives the chromatic number of the graph χ(G), if it is known and its interval of belonging otherwise.
Note that this information comes from other algorithms after a computation-time that may be very long. Next
column provides the result of our lower bound, LBχ, computed as in section 4. Last five columns display, Σ(G),
the chromatic sum when it is known; Σold, the best lower bound of Σ(G) known in the literature; LBMΣ,
the lower bound presented in [7]; ΣM0, our lower bound computed without s = χ(G); ΣM , our lower bound
computed with s = χ(G).

4code available on: github.com/gondran/LowBoundSumColoring

12

Table 1: Results of weak optimality tests on some graphs of DIMACS and COLOR benchmarks.

Instances n d α(G) time #is time m time χ(G) LBχ Σ(G) Σold LBMΣ ΣM0 ΣM

myciel3 11 0.36 5 < 0.1 2 < 0.1 1 0 4 3 ? 20 20 19 20
myciel4 23 0.28 11 < 0.1 2 < 0.1 1 0 5 3 ? 41 41 37 41
myciel5 47 0.22 23 < 0.1 1 < 0.1 1 0 6 3 ? 80 81 73 81
myciel6 95 0.17 47 < 0.1 1 < 0.1 1 0 7 3 ? 158 158 145 158
myciel7 191 0.13 95 < 0.1 1 0.1 1 0 8 3 ? 308 308 289 308

queen5 5 25 0.53 5 < 0.1 10 < 0.1 5 < 0.1 5 5 75 75 75 75 75
queen6 6 36 0.46 6 < 0.1 4 < 0.1 4 < 0.1 7 7 ? 126 127 129 129
queen7 7 49 0.40 7 < 0.1 40 < 0.1 7 < 0.1 7 7 196 196 196 196 196
queen8 8 64 0.36 8 < 0.1 92 < 0.1 6 < 0.1 9 9 291* 288 289 291 291
queen8 12 96 0.30 8 < 0.1 195 271 0.3 #is × 12 12 ? 624 624 624 624
queen9 9 81 0.33 9 < 0.1 352 < 0.1 7 < 0.1 10 10 ? 405 406 408 408

queen10 10 100 0.30 10 < 0.1 724 0.2 8 0.8 11 11 553* 550 551 553 553
queen11 11 121 0.27 11 < 0.1 2 680 0.9 11 207 11 11 726 726 726 726 726
queen12.12 144 0.25 12 < 0.1 14 200 6** #is × 12 12 936 936 936 936 936
queen13.13 169 0.23 13 < 0.1 73 712 0.5** #is × 13 13 1 183 1 183 1 183 1 183 1 183
queen14.14 196 0.22 14 < 0.1 365 596 3** #is × 14 14 1 470 1 470 1 470 1 470 1 470
queen15.15 225 0.21 15 < 0.1 2 279 184 17** #is × 15 15 1 800 1 800 1 800 1 800 1 800
queen16.16 256 0.19 16 < 0.1 14 772 512 113** #is × 16 16 ? 2 176 2 176 2 176 2 176

2-Insertions 3 37 0.11 18 < 0.1 1 < 0.1 1 0 4 3 ? 55 59 58 59
3-Insertions 3 56 0.07 27 < 0.1 11 < 0.1 1 0 4 3 ? 84 88 88 89

DSJC125.1 125 0.09 34 < 0.1 747 < 0.1 1 0 5 4 ? 297 297 299 300
DSJC125.5 125 0.50 10 < 0.1 2 < 0.1 1 0 17 14 ? 851 855 918 924
DSJC125.9 125 0.90 4 < 0.1 9 < 0.1 5 < 0.1 44 40 ? 2 108 2 124 2 475 2 487
DSJC250.5 250 0.50 12 < 0.1 2 < 0.1 2 < 0.1 〚26, 28〛 23 ? 2 745 2 745 2 924 2 930
DSJC250.9 250 0.90 5 < 0.1 3 < 0.1 2 < 0.1 72 62 ? 6 651 6 678 7 815 7 882
DSJC500.5 500 0.50 13 2 51 3 9 < 0.1 〚43, 47〛 41 ? 9 867 9 877 10 336 10 339
DSJC500.9 500 0.90 5 < 0.1 23 < 0.1 15 < 0.1 〚123, 126〛 122 ? 25 581 25 581 29 766 29 768
DSJC1000.5 1000 0.50 15 159 12 290 6 < 0.1 〚73, 82〛 71 ? 33 835 33 856 35 805 35 808
DSJC1000.9 1000 0.90 6 0.1 3 0.1 3 < 0.1 〚216, 222〛 200 ? 85 235 85 294 99 906 100 078
DSJR500.1c 500 0.97 13 < 0.1 4 < 0.1 2 < 0.1 85 42 ? 15 398 11 040 10 587 11 619
DSJR500.5 500 0.47 7 0.3 18 0.8 2 < 0.1 122 83 ? 23 609 19 599 20 919 21 832
flat300 20 0 300 0.48 15 < 0.1 20 < 0.1 20 < 0.1 20 20 3 150 3 150 3 150 3 150 3 150
flat300 26 0 300 0.48 12 < 0.1 31 1 14 < 0.1 26 26 3 966* 3 901 3 901 3 966 3 966
flat300 28 0 300 0.48 12 < 0.1 45 1 6 < 0.1 28 27 ? 3 906 3 906 4 098 4 099
flat1000 50 0 1000 0.49 20 36 50 78 50 < 0.1 50 50 25 500 25 500 25 500 25 500 25 500
flat1000 60 0 1000 0.49 17 89 42 199 40 < 0.1 60 60 30 100* 29 914 29 914 30 100 30 100
flat1000 76 0 1000 0.49 15 184 21 394 8 < 0.1 76 71 ? 33 880 33 880 35678 35 693

* new optimal solution that we proved
** computation was done with the Cliquer5 [14] solver because for listing all maximum cliques Cliquer is faster
than MoMC.

On the 37 graphs of this test set, we improve the result for 18 graphs (light blue in Table 1). For 17 graphs we
find the same lower bound as in the literature. For 2 graphs, our lower bound is worse than the best lower bound
of the literature. The reason is that for these graphs, the approach used by Moukrim et al. [15, 16] is totally
different of ours, based on the decomposition of the graph into partition of cliques. For 9 graphs, the optimal
lower bound was already found with the much simpler LBMΣ lower bound. We have proven the exact value
of Σ(G) for 4 graphs (with * in Table 1), and have computed an example of optimal coloring. Our approach
is similar to that of Lecat et al. [7] but we outperformed their results by introducing an additional constraint
with the integer m.

Our lower bound of χ(G), LBχ, is equal to the chromatic number for all queen graph instances (13 graphs)
and for 4 flat graph instances. Note that for five of those instances (queen5 5, queen7 7, queen11 11, flat300 20 0
and flat1000 50 0), we also found the optimal coloring. Indeed, in those cases, the decomposition of the number
of vertices is : n = α(G) ×m + (α(G) − 1) × q + r with q = r = 0, i.e. χ(G) = m. Therefore we know the m
compatible independent sets that composed the optimal solution.

Moreover, our LBχ is computed in 78 s and 199 s for respectively flat1000 50 0 and flat1000 60 0 graph
instances while it takes respectively 3 331s and 29 996s with the most powerful method [17] to find a lower
bound of χ(G).

6 Conclusion

We presented a new way to find lower bounds for the MSCP and the GV CP . In order to do this, we explained
how to relax MSCP into an integer partition problem that can be exactly solved. We can select the constraints
we want to keep in this integer partition problem, and we proposed a set of constraints used to define the ΣM
lower bound. We carried out experiments and improved the best known lower bound for 18 graphs of standard
benchmark DIMACS. We also proved the optimality of 4 of them.

It is also possible to add even more constraints in the integer partition problem. Further researches could use
this approach to keep improving the lower bound.

13

References

[1] M. Malafiejski, Sum coloring of graphs, in: Kubale [2], pp. 55–66.

[2] M. Kubale (Ed.), Graph Colorings, Vol. 352 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, American Mathematical Society, Providence, Rhode Island, USA, 2004.

[3] Q. Wu, Q. Zhou, Y. Jin, J. Hao, Minimum sum coloring for large graphs with extraction and backward
expansion search, Appl. Soft Comput. 62 (2018) 1056–1065. doi:https://doi.org/10.1016/j.asoc.2017.
09.043.

[4] Y. Jin, J.-K. Hao, Hybrid evolutionary search for the minimum sum coloring problem of graphs, Information
Sciences (2016) 15–34.

[5] E. Kubicka, G. Kubicki, D. Kountanis, Approximation algorithms for the chromatic sum, in: Computing
in the 90’s, Springer, 1991, pp. 15–21.

[6] Y. Jin, J.-P. Hamiez, J.-K. Hao, Algorithms for the minimum sum coloring problem: a review, Artificial
Intelligence Review (2017) 367–394.

[7] C. Lecat, C. Lucet, C.-M. Li, New Lower Bound for the Minimum Sum Coloring Problem., in: AAAI, 2017,
pp. 853–859.

[8] D. S. Johnson, M. Trick (Eds.), Cliques, Coloring, and Satisfiability: Second DIMACS Implementation
Challenge, 1993, Vol. 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
American Mathematical Society, Providence, RI, USA, 1996.

[9] Q. Wu, J.-K. Hao, Improved lower bounds for sum coloring via clique decomposition, CoRR abs/1303.6761.
URL http://dblp.uni-trier.de/db/journals/corr/corr1303.html#abs-1303-6761

[10] A. Young, On quantitative substitutional analysis, Proceedings of the London Mathematical Society 33
(1900) 97–145.

[11] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Freeman, San Francisco, CA, USA, 1979.

[12] L. G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput. 8 (3) (1979)
410–421. doi:10.1137/0208032.

[13] C.-M. Li, H. Jiang, F. Manyá, On minimization of the number of branches in branch-and-bound algorithms
for the maximum clique problem, Computers & Operations Research 84 (2017) 1–15. doi:https://doi.

org/10.1016/j.cor.2017.02.017.

[14] P. R. Österg̊ard, A new algorithm for the maximum-weight clique problem, Nordic Journal of Computing
(2001) 424–436.

[15] A. Moukrim, K. Sghiouer, C. Lucet, Y. Li, Lower Bounds for the Minimal Sum Coloring Problem, Electronic
Notes in Discrete Mathematics 36 (2010) 663–670, iSCO 2010 - International Symposium on Combinatorial
Optimization.

[16] A. Moukrim, K. Sghiouer, C. Lucet, Y. Li, Upper and Lower Bounds for the Minimum Sum Coloring
Problem, Tech. rep., Université de Technologie de Compiègne and Université de Picardie Jules Verne
(2013).
URL https://www.hds.utc.fr/~moukrim/dokuwiki/_media/en/mscp_cor13septembre2013.pdf

[17] S. Held, W. Cook, E. Sewell, Maximum-weight stable sets and safe lower bounds for graph coloring,
Mathematical Programming Computation 4 (4) (2012) 363–381. doi:10.1007/s12532-012-0042-3.

14

http://dx.doi.org/https://doi.org/10.1016/j.asoc.2017.09.043
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2017.09.043
http://dblp.uni-trier.de/db/journals/corr/corr1303.html#abs-1303-6761
http://dblp.uni-trier.de/db/journals/corr/corr1303.html#abs-1303-6761
http://dx.doi.org/10.1137/0208032
http://dx.doi.org/https://doi.org/10.1016/j.cor.2017.02.017
http://dx.doi.org/https://doi.org/10.1016/j.cor.2017.02.017
https://www.hds.utc.fr/~moukrim/dokuwiki/_media/en/mscp_cor13septembre2013.pdf
https://www.hds.utc.fr/~moukrim/dokuwiki/_media/en/mscp_cor13septembre2013.pdf
https://www.hds.utc.fr/~moukrim/dokuwiki/_media/en/mscp_cor13septembre2013.pdf
http://dx.doi.org/10.1007/s12532-012-0042-3

	Introduction
	Relaxation as an integer partition problem
	Integer partitions
	Definition of IPPM
	Analysis

	Solving IPP
	Ordering integer partitions
	Resolution of the relaxed problem IPPM
	Without constraint as1
	With constraint as1

	Lower bound for graph coloring
	Results
	Procedure
	Empirical Results and Analysis

	Conclusion

