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a b s t r a c t

In the minimum sum edge coloring problem, we aim to assign natural numbers to edges
of a graph, so that adjacent edges receive different numbers, and the sum of the numbers
assigned to the edges is minimum. The chromatic edge strength of a graph is the minimum
number of colors required in aminimumsumedge coloring of this graph.We study the case
of multicycles, defined as cycles with parallel edges, and give a closed-form expression for
the chromatic edge strength of a multicycle, thereby extending a theorem due to Berge. It
is shown that the minimum sum can be achieved with a number of colors equal to the
chromatic index. We also propose simple algorithms for finding a minimum sum edge
coloring of a multicycle. Finally, these results are generalized to a large family of minimum
cost coloring problems.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

During a banquet, n people are sitting around a circular table. The table is large, and each participant can only talk to her/his
left and right neighbors. For each pair of neighbors around the table, there is a given number of available discussion topics. If we
suppose that each participant can only discuss one topic at a time, and that each topic takes an unsplittable unit amount of time,
then what is the minimum duration of the banquet, after which all available topics have been discussed? What is the minimum
average elapsed time before a topic is discussed?
In this paper, we show that there always exists a scheduling of the conversations such that these twominima are reached

simultaneously. We also propose an algorithm for finding such a scheduling. This amounts to coloring edges of amulticycle
on n vertices.
We first recall some standard definitions. Let G = (V , E) be a finite undirected (multi)graph without loops. A vertex

coloring of G is a mapping from V to a finite set of colors such that adjacent vertices are assigned different colors. The
chromatic number χ(G) of G is the minimum number of colors that can be used in a coloring of G. An edge coloring of G is
a mapping from E to a finite set of colors such that adjacent edges are assigned different colors. The minimum number of
colors in an edge coloring of G is called the chromatic index χ ′(G). From now on, we assume that colors are positive integers.
The vertex chromatic sum of G is defined as Σ(G) = min

{∑
v∈V f (v)

}
, where the minimum is taken over all colorings f of

G. Similarly, the edge chromatic sum of G, denoted byΣ ′(G), is defined asΣ ′(G) = min
{∑

e∈E f (e)
}
, where the minimum is

taken over all edge colorings. In both cases, a coloring yielding the chromatic sum is called aminimum sum coloring.
We also define the minimum number of colors needed in a minimum sum coloring of G. This number is called the

strength s(G) of the graph G in the case of vertex colorings, and the edge strength s′(G) in the case of edge colorings. Clearly,
s(G) ≥ χ(G) and s′(G) ≥ χ ′(G).
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The chromatic sum is a useful notion in the context of parallel job scheduling. A conflict graph between jobs is a graph
in which two jobs are adjacent if they share a resource, and therefore cannot be run in parallel. If each job takes one time
unit, then a scheduling that minimizes the makespan is a coloring of the conflict graph with a minimum number of colors.
On the other hand, a minimum sum coloring of the conflict graph corresponds to a scheduling that minimizes the average
time before a job is completed. In our example above, jobs are conversations, resources are the banqueters, and the conflict
graph is the line graph of a multicycle.
Previous results. Chromatic sums have been introduced by Kubicka in 1989 [1]. The computational complexity of determining
the vertex chromatic sum of a simple graph has been studied extensively since then. It is NP-hard even when restricted to
some classes of graphs for which finding the chromatic number is easy, such as bipartite or interval graphs [2,3]. A number
of approximability results for various classes of graphs were obtained in the last ten years [4–7]. Similarly, computing the
edge chromatic sum is NP-hard for bipartite graphs [8], even if the graph is also planar and has maximum degree 3 [9].
Hardness results were also given for the vertex and edge strength of a simple graph by Salavatipour [10], and Marx [11].
Some results concern the relations between the chromatic number χ(G) and the strength s(G) of a graph. It has been

known for long that the vertex strength can be arbitrarily larger than the chromatic number [12]. However, if G is a proper
interval graph, then s(G) = χ(G) [13], and s(G) ≤ min{n, 2χ(G) − 1} if G is an interval graph [14]. Hajiabolhassan,
Mehrabadi, and Tusserkani [15] proved an analog of Brooks’ theorem for the vertex strength of simple graphs: s(G) ≤ ∆(G)
for every simple graph G that is neither an odd cycle nor a complete graph, where∆(G) is the maximum degree in G.
Concerning the relation between the chromatic index and the edge strength, Mitchem, Morriss, and Schmeichel [16]

proved an inequality similar to Vizing’s theorem: s′(G) ≤ ∆(G) + 1 for every simple graph G. Harary and Plantholt [17]
have conjectured that s′(G) = χ ′(G) for every simple graph G, but this was later disproved by Mitchem et al. [16], and
Hajiabolhassan et al. [15].
Our results.We considermultigraphs, in which parallel edges are allowed. In Section 2 we prove that if G is a multicycle, that
is, a cycle with parallel edges, then s′(G) = χ ′(G). This statement extends a classical result from Berge.
In Section 3, we give an algorithm of complexity O(∆n) for finding a minimum sum coloring of a multicycle G of order n

and maximum degree∆. This algorithm iteratively eliminates edges that will form the color class corresponding to the last
color s′(G). For the special case where n is even, we also give a more efficient O(m)-time algorithm based on the property of
optimal colorings that the first color classes induce a uniform multicycle.
We conclude by generalizing our results to other objective functions.

2. Multicycles

The following well-known result has been proved by König in 1916.

Theorem 1 (König’s Theorem [18]). Let G = (V , E) be a bipartite multigraph and let ∆ denote its maximum degree. Then
χ ′(G) = ∆.

Hajiabolhassan et al. [15] mention that s′(G) = χ ′(G) for every bipartite graph G. In fact, by using the same technique as in
the classical proof of König’s theorem, it is easy to deduce that s′(G) = χ ′(G) for every bipartite multigraph G.

Theorem 2. Let G = (V , E) be a bipartite multigraph and let ∆ denote its maximum degree. Then s′(G) = χ ′(G) = ∆.

Multicycles are cycles in whichwe can have parallel edges between two consecutive vertices.We consider the chromatic
edge strength of multicycles.
The chromatic edge strength s′(G) of a graph G is bounded from below by both ∆ and dm

τ
e, where ∆ is the maximum

degree inG and τ is the cardinality of amaximummatching inG. In this section, we show that the lower boundmax{∆, dm
τ
e}

is indeed tight for multicycles. We assume that the multiplicity of each edge in the multicycle is at least one, so that the size
τ of a maximummatching is equal to bn/2c.
We first give a closed-form expression for the chromatic index of multicycles.

Theorem 3 ([19]). Let G = (V , E) be amulticycle on n vertices withm edges andmaximumdegree∆. Let τ denote themaximum
cardinality of a matching in G. Then

χ ′(G) =

{
∆, if n is even,

max
{
∆,
⌈m
τ

⌉}
, if n is odd.

We now introduce some useful notations. Given C the set of colors used in an edge coloring of a multigraph G, we denote
by Cx the subset of colors of C assigned to edges incident to vertex x of G. Given two colors α and β , we call a path an (α, β)-
path if the colors of its edges alternate between α and β . We also denote by dG(x) the degree of vertex x in G. We now state
our main result.
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Fig. 1. An illustration of the case σ ∈ Cb \ Ca in the proof of Theorem 4, on a multicycle Gwith s′ = χ ′ = 3. The edge [a, b]0 is the only edge colored with
color s′ + 1 = 4. In this example, color σ = 3 and color α ∈ Ca \ Cb is equal to 1.

Fig. 2. An illustration of the case σ ∈ Ca ∩ Cb in the proof of Theorem 4, with s′ = χ ′ = 3. Again, [a, b]0 is the only edge colored with color s′ + 1 = 4,
and σ = 3.

Theorem 4. Let G = (V , E) be a multicycle on n vertices with m edges and maximum degree∆, and let τ denote the maximum
cardinality of a matching in G. Then

s′(G) = χ ′(G) =

{
∆, if n is even,

max
{
∆,
⌈m
τ

⌉}
, if n is odd.

Proof. If n is even, then the result follows from Theorem 2. Thus, we assume that n = 2k + 1 for a positive integer k and
let s′ = s′(G). Let r = max

{
∆, dmk e

}
. As τ = k, then it is clear that χ ′(G) = r . Moreover, as s′ ≥ χ ′(G) then, it suffices to

prove that s′ ≤ r . Assume that s′ > r and G is a smallest counterexample. We claim that there exists a minimum sum edge
coloring f of G in which there is only one edge colored with color s′. Otherwise, delete one of the edges with color s′, say e.
From the minimality of G, there exists a minimum sum edge coloring of G \ e with χ ′ colors. Then we obtain the desired
edge coloring of G by assigning the color s′ = χ ′ + 1 = r + 1 to e.
Let Ei denote the set of edges of G with color i and let [a, b]0 be the only edge in G colored with color s′. Moreover, let

G′ = G \ [a, b]0. By the minimality of G, we have that s′(G′) = χ ′(G′) = max
{
∆′, dm−1k e

}
≤ r . Let C = {1, . . . , r}. The

following properties for the edge coloring of G′ can be easily deduced:

(1) There exists a color σ ∈ C such that |Eσ | < k.
(2) |Ca ∪ Cb| = r .
(3) There exist at least two colors α and β in C such that α ∈ Ca \ Cb and β ∈ Cb \ Ca, with α 6= β .

For (1), notice that if there is no color σ ∈ C such that |Eσ | < k, then m − 1 =
∑r
i=1 |Ei| = kr , hence r =

m−1
k < m

k ,
contradicting the definition of r . Property (2) holds, otherwise edge [a, b]0 can be coloredwith a color in C which contradicts
the fact thatG′ is a counterexample. Finally, notice that the degree of vertices a and b inG′ is atmost equal to∆−1. Since r ≥
∆, there is a color β 6∈ Ca and a color α 6∈ Cb with α, β ∈ C . Clearly α 6= β , otherwise [a, b]0 can be coloredwith such a color,
contradicting the fact thatG is a counterexample.Moreover, by (2), we have thatα ∈ Ca\Cb andβ ∈ Cb\Ca, which proves (3).
By Property (2), it is sufficient to analyze the cases σ ∈ Cb \ Ca (or σ ∈ Ca \ Cb) and σ ∈ Ca ∩ Cb. The two cases are illustrated
on Figs. 1 and 2, respectively.
If σ ∈ Cb \ Ca then, by Property (3), there exists a color α ∈ Ca \ Cb with α 6= σ . Let G(α, σ ) denote the subgraph of

G′ induced by the edges of color α and σ . Let Gb(α, σ ) denote the connected component of G(α, σ ) containing b. Clearly,
Gb(α, σ ) is a simple (σ , α)-path having b as last vertex and not containing vertex a, otherwise we have a contradiction to
Property (1). Hencewe can recolor the edges of the pathGb(α, σ ) by swapping colorsα andσ in such away thatσ 6∈ Cb. Since
σ 6∈ Ca, we assign color σ to [a, b]0, and obtain an edge coloring f ′′ of G using r colors. Fig. 1 provides an example of this case.
We now want to show that∑

e∈E

f ′′(e) <
∑
e∈E

f (e), (∗)

contradicting s′(G) > r . If the length of the pathGb(α, σ ) is even, then
∑
e∈E f

′′(e)−
∑
e∈E f (e) = σ−r−1 ≤ r−r−1 < 0. If

the length of the pathGb(α, σ ) is odd, say 2s+1,with s ≥ 0, then the difference is (σ+(s+1)α+sσ)−(r+1+(s+1)σ+sα) =
α − r − 1 ≤ r − r − 1 < 0. Thus, inequality (∗) always holds.
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Fig. 3. An example for which the natural greedy algorithm fails. The graph is a 2-uniform 5-cycle, and has chromatic edge strength max{∆, dm/ke} =
max{4, d10/2e} = 5. However, iteratively removing maximummatchings can yield a 6-coloring.

The other case is when σ ∈ Ca ∩ Cb. By Property (3), there exists a color β ∈ Cb \ Ca. Let us assume that vertices are
ordered clockwise and let b be the clockwise vertex of edge [a, b]0. Recolor edge [a, b]0 with color β and the edge of color β
incident to b with color s′ = r + 1. This recoloring does change neither the value of the sum nor the number of colors. Let
[x, y]0 be the edge that is recolored with color s′, with x being its counterclockwise vertex.
By Property (3) again, a color βy such that βy ∈ Cy \ Cx exists. We can therefore repeat the above procedure until the

edge [x, y]0 is such that σ ∈ Cx \ Cy or σ ∈ Cy \ Cx. This is always possible, because the cycle is odd, and |Eσ | < k; hence
by moving around the cycle this way, we will eventually find an edge [x, y]0 that is adjacent to only one edge of color σ .
Assume, without loss of generality, that σ ∈ Cy \ Cx. Then letting a = x and b = y leads us back to the first case. Fig. 2 gives
an example of this case. �

3. Algorithms

Wenowpresent algorithms forminimumsumcoloring ofmulticycles. The complexity of our algorithmswill be a function
of bothm and n. Hence if the input consists of the number of parallel edges between every pair of consecutive vertices, our
algorithms will only be pseudopolynomial. This is natural since we expect a coloring to be represented by an encoding of
sizeΘ(m).
The line graph of a multicycle is a proper circular arc graph. Hence the problem of coloring edges of multicycles is a

special case of proper circular arc graph coloring. It is easy to realize that not all proper circular arc graphs are line graphs of
multicycles, though. Proper circular arc graphs were shown by Orlin, Bonuccelli, and Bovet [20] to admit equitable colorings,
that is, colorings inwhich the sizes of any two color classes differ by atmost one, that only useχ colors. Therefore, a corollary
of our results is that multicycles admit both equitable and minimum sum edge colorings with the same, minimum, number
of colors, and that both types of colorings can be computed efficiently.
We first present a general algorithm, then focus on the case where n is even.

3.1. The general case

A natural idea for solving minimum cost coloring problems is to use a greedy algorithm that iteratively removes
maximum independent sets (or maximummatchings in the case of edge coloring) [4,7]. It can be shown that this approach
fails here (see Fig. 3). Instead we use an algorithm in which the smallest color class, corresponding to color s′, is removed
iteratively.
We first consider the case where dm/ke ≥ ∆ and k dividesm. Then the number of colors must be equal tom/k. But since

each color class can contain at most k edges, every color class in a minimum sum coloring must have size exactly k. Such a
coloring can be easily found in linear time by a sweeping algorithm that assigns each color i mod χ ′ in turn. This is a special
case of the algorithm of Orlin et al. (Lemma 2, [20]) for circular arc graph coloring. In the remainder of this section, we refer
to this case as the ‘‘easy case’’.

Algorithm (MulticycleColor).
1. i← s′(G), Gi ← G
2. if d|E(Gi)|/ke ≥ ∆(Gi) and k divides |E(Gi)| then apply the ’’easy case’’ algorithm and terminate
3. else
(a) Find a matchingM of minimum size such that s′(Gi \M) = s′(Gi)− 1
(b) color the edges ofM with color i
(c) Gi−1 ← Gi \M , i← i− 1
(d) if Gi 6= ∅ then go to step 2.

The correctness of the algorithm relies on the following lemma.

Lemma 1. Given a matching M in a multicycle G such that
1. s′(G \M) = s′(G)− 1,
2. M has minimum size among all matchings satisfying condition 1,
there exists a minimum sum edge coloring of G such that M is the set of edges colored with color s′(G).
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(a) Odd case: Edges ofM ′ . (b) Odd case: Edges ofM .
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(c) Even case: Edges ofM ′ . (d) Even case: Edges ofM .

Fig. 4. Illustration of the proof of Lemma 1.

Proof. We distinguish three cases, (a), (b), and (c), depending on the relative values of dm/ke and∆.
Case (a) We first assume that dm/ke > ∆ and k does not divide m, thus m = bm/kc · k + q, with q > 0. In that case,

M has size exactly q. To find a minimum sum coloring, we color the edges ofM with color dm/ke. The remaining edges are
colored using the ‘‘easy case’’ algorithm, which applies since bm/kc ≥ ∆ and the number of remaining edges is a multiple
of k. This coloring must have minimum sum, because only one color class has not size k.
Case (b) When ∆ > dm/ke, we have s′(G) = ∆ from Theorem 4. We claim that in that case, M is a minimum matching

that hits all vertices of degree ∆. To prove this, suppose otherwise. Then (G \ M) has maximum degree ∆, and thus from
Theorem 4, s′(G \M) = s′(G), contradicting condition 1. Now we have to ensure that there exists a minimum sum coloring
such thatM is the color class s′(G) = ∆.
We consider a minimum sum coloring and the color class∆ in this coloring. This class, sayM ′, must also be a matching

hitting all vertices of degree∆. We now describe a recoloring algorithm that, starting with this coloring, produces a coloring
whose sum is not greater andwhose color class∆ is exactlyM . We define a block as amaximal sequence of adjacent vertices
of degree∆. The algorithm examines each block, and shifts the edges ofM ′ if they do not match with those ofM . Two cases
can occur, depending on the parity of the block length.
The first case is when a block contains an odd number of vertices of degree∆, say v1, v2, . . . , v2t+1 for some integer t . In

that case, the only way in which M and M ′ can disagree is, without loss of generality, when M ′ contains edges of the form
v0v1, v2v3, . . . , v2tv2t+1, while M contains v1v2, v3v4, . . . , v2t+1v2t+2 (see Fig. 4(a)–Fig. 4(b)), where v0 and v2t+2 are the
predecessor of v1 and the successor of v2t+1, respectively. Since the degree of v0 is, by definition of a block, strictly less than
∆, there must exist a color α ∈ Cv1 \ Cv0 . Furthermore, since all vertices within the block have degree∆, the color class for
color α contains t + 1 edges of the form v2i+1v2i+2 for 0 ≤ i ≤ t . Hence we can recolor the edges ofM ′ of the form v2iv2i+1
for 0 ≤ i ≤ t with color α, and the t + 1 edges of color α within the block with color∆. Note that at this point, the coloring
might be not proper anymore, as two edges colored∆might be incident to v2t+2.
The other case is when a block contains an even number of vertices of degree∆, say v1, v2, . . . , v2t for some integer t . In

that case, sinceM is minimum, it contains edges of the form v1v2, v3v4, . . . , v2t−1v2t . The onlyway inwhichM ′ can disagree
with M is by containing edges v0v1, v2v3, . . . , v2tv2t+1 (see Fig. 4(c)–Fig. 4(d)). Like in the previous case, there must be a
color α 6∈ Cv0 , so we can recolor the edges of M

′ of the form v2iv2i+1 for 0 ≤ i < t with color α, and the edges of color α
within the block with color∆. Note that the edge v2tv2t+1 of color∆ has not been recolored, thus v2t−1v2t and v2tv2t+1 both
have color∆, and at this point the coloring is not proper anymore.
We proceed in this way for each block. Notice that the sum of the coloring is unaltered, and that the set of edges of color

∆ is now a superset of M . Also, while G is not necessarily properly colored anymore, the graph G \ M is properly colored
with at most∆ colors. But since removingM decreases the strength, we know that we can recolor G \M with∆− 1 colors
without increasing the sum. Doing that and gluing back the edges of M colored with color ∆, we obtain a minimum sum
coloring where only the edges ofM have color∆, as claimed.
Case (c) Finally, in the case where dm/ke = ∆, withm = bm/kc · k+ q, the matchingM consists of at least q edges that

together hit all vertices of degree∆. IfM has exactly size q, then case (a) above applies, since we know that by removingM ,
we also decrease the maximum degree. Otherwise case (b) applies. �

We have to make sure that the main step of the algorithm can be implemented efficiently.

Lemma 2. Finding a matching M in a multicycle G such that s′(G \ M) = s′(G) − 1 and M has minimum size can be done in
O(n) time.
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Proof. The three cases of the previous proof must be checked. In the case where dm/ke > ∆ and m = bm/kc · k + q, we
can pick any matching of size q, which can clearly be done in linear time. In the second case, when dm/ke < ∆, we need
to find a minimum matching hitting all vertices of degree∆. This can be achieved in linear time as well by proceeding in a
clockwise greedy fashion.
Finally, in the last case, we need to find a minimum set of at least q edges that together hit all vertices of degree∆. This

can also be achieved in O(n) time as follows. We first find the minimum matching hitting all maximum degree vertices. If
the resulting matching has size at least q, then we are done and back to the previous case. Otherwise, we need to include
additional edges. For that purpose, we can proceed in the clockwise direction and iteratively extend each block in order to
include the exact number of additional edges. This can take linear time as well if we took care to count the size of each block
and of the gaps between them in the previous pass. �

Theorem 5. AlgorithmMulticycleColor finds a minimum sum coloring of a multicycle on n vertices and with maximum degree
∆ in time O(∆n).

Proof. The number of iterations of the algorithm is at most s′(G) = max{dm/ke,∆}. Hence the running time is O(max
{dm/ken,∆n}) = O(max{m,∆n}) = O(∆n). �

We deliberately ignored the situation in which after some iterations, the multicyle Gi does not contain a full cycle
anymore, that is, one of the edge multiplicity mi drops to 0. We are then left with a collection of disjoint multipaths, for
which the minimum sum coloring problem becomes easier. This special case is described in the following section.

3.2. A linear time algorithm for even length multicycles

We turn to the special case n = 2k, that is, the number of vertices is even. We show that in that case, minimum sum
colorings have a convenient property that canbe exploited in a fast algorithm. This algorithm first colors a uniformmulticycle
contained in G such that the remaining edges of G form a (possibly unconnected) multipath. This multipath is then colored
separately.
We begin this section by the following result on multipaths. We consider multipaths with vertices labelled {1, 2, . . . , n},

such that edges are only between vertices of the form i, i+ 1.

Lemma 3. There always exists a minimum sum edge coloring of a multipath H, such that its color classes Ei are maximum
matchings in the graphs Hi = H \ ∪i−1j=1 Ej; furthermore these matchings contain all the edges appearing in odd position from
left to right in each connected component of Hi.

Proof. Suppose H has been colored optimally. We want to transform such an edge coloring into another one that verifies
the hypothesis of the theorem. Let i be the minimum positive integer for which Ei does not verify the hypothesis. Note that
the color of every edge in Hi is at least i.
We can assume that Hi is connected, the following reasoning being applicable to each connected component. We first

remark that Ei is a maximal matching, otherwise one edge can be recolored with color i, contradicting the optimality
of the given edge coloring. Thus Ei can be partitioned into blocks, defined as maximal sequences of consecutive vertices
{y1, y2, . . . , y2t} such that one of the edges between y2j−1 and y2j has color i, for 1 ≤ j ≤ t . Two consecutive blocks are
separated by a single vertex whose incident edges have colors strictly greater than i. We now show that if a block starts at
an even vertex, it can be recolored without decreasing the color sum. We let y0 be the vertex preceding y1.

Recoloring: Let α1 6= i be any color appearing on the edges between y0 and y1. We recolor an edge of color α1 with color
i and color the edge between vertices y1 and y2 of color i with color α1. Now, for each j, with 1 < j ≤ t , we recolor the
edge y2j−1y2j of color iwith a color αj appearing on the edges y2j−2y2j−1, and color the edge y2j−2y2j−1 of color αj with color
i. The color αj is chosen such that αj = αj−1 if color αj−1 appears on edges y2j−2y2j−1, and it is any color appearing on edges
y2j−2y2j−1 otherwise. At the end, we have two cases. Either y2t is the last vertex of the path, and we are done, or there exist
edges between y2t and, say, y2t+1. One of these edges may be of color αt , and can be recolored with color i. Otherwise, any
such edge can be recolored with color i. Since, by definition, y2t+1 was not incident to any edge with color i, this yields a
proper coloring whose sum is not greater than the original one.
Now, it is clear that we can assume that every block starts at an odd vertex. This implies that there is only one block.

Furthermore, this block must start with the first vertex of the path. Hence Ei is a maximum matching containing all the
edges appearing in odd position. �

From Lemma 3, we can deduce the following result, that settles the case of multipaths.

Theorem 6. The greedy algorithm that iteratively picks a maximum matching formed by all edges appearing in odd position in
each connected component of a multipath H, computes a minimum edge sum coloring of H in time O(m).

We now consider the case of even multicycles. We assume that the vertices in the multicycle G on n = 2k vertices are
labelled clockwise with integers 0, 1, . . . , n − 1, and arithmetic operations are taken modulo n. For each 0 ≤ i < n, let
mi denote the number of parallel edges between two consecutive vertices i and i + 1 in G. Let p be a positive integer. A
multicycle Gwithm = pn edges is called p-uniform ifmi = p for every i such that 0 ≤ i < n.
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Lemma 4. Let G be a multicycle of even length and let p = minimi. Let f be any minimum sum edge coloring of G. Then, f can
be transformed into another minimum sum edge coloring f ′ such that the first 2p color classes Ei induced by f ′, with 1 ≤ i ≤ 2p,
are such that |Ei| = k and their union induces a p-uniform multicycle.
Proof. Let G be a multicycle on n vertices, with n = 2k for some integer k > 1. Let f be any minimum sum edge coloring of
G. Clearly, as f is minimum, we have that |E1| ≥ |E2| ≥ · · · ≥ |Eχ ′ |. Let us consider the following claim.

Claim 1. The coloring f can be transformed into a minimum sum edge coloring f ′ having the property that the edges colored with
colors 1 and 2 induce a subgraph of G isomorphic to a cycle.
Notice that, by using Claim 1, the lemma follows directly by induction on p. So, in order to prove Claim 1, first notice that,
by using a similar recoloring argument as in the proof of Lemma 3, we can deduce that |E1| = k.
Now, without loss of generality, assume that f is such that there is an edge colored with color 1 between vertices 2j and

2j+ 1 for each jwith 0 ≤ j < k. Moreover, let c ≥ 2 be the minimum color appearing on the edges between vertices 2j+ 1
and 2j+ 2, for all 0 ≤ j < k.
Suppose that there exists a maximal sequence i1, . . . , i2t of consecutive vertices in G, such that colors 1 and c belong to

the set of colors assigned by f to the edges between vertices i2q−1 and i2q, with 1 ≤ q ≤ t . Then by using the same recoloring
argument as in the proof of Lemma3,we canmove color c in order to transform such a sequence into a (c, 1)-path.Moreover,
again by using the same recoloring argument as in the proof of Lemma 3, we can deduce that |Ec | = k.
So, if c = 2 we are done, otherwise, we can swap the colors 2 and c so that |E2| = k and E1 ∪ E2 induce a cycle. �

Theorem 7. There exists an O(m)-time algorithm for computing a minimum sum edge coloring of a multicycle G of even length
with m edges.
Proof. Let n = 2k be the number of vertices in G and let p = mini{mi}, for 0 ≤ i < n. For each 0 ≤ j < k, assign to p edges
between vertices 2j and 2j+ 1 the odd colors 1, 3, . . . , 2p− 1 and assign to p edges between vertices 2j+ 1 and 2j+ 2 the
even colors 2, 4, . . . , 2p.
The previous pn colored edges induce a subgraph of G isomorphic to a p-uniform multicycle. When removing this

p-uniform multicycle from G, we obtain a multipath or a set of disjoint multipaths, the edges of which can be colored with
colors in {2p+ 1, . . . , s′(G)}, from Theorem 6.
Such a coloring can be computed in O(m) time, and by Lemmas 3 and 4, it is a minimum sum edge coloring of G. �

4. Conclusion

The question of whether minimum sum colorings always use aminimum number of colors, as is the case for multicycles,
can be asked for other classes of graphs or multigraphs. We can also consider other types of colorings. In this conclusion, we
outline a generalization of our results to a large family of coloring problems.
In the generalized optimal cost chromatic partition problem [21], each color has an integer cost, but this cost is not

necessarily equal to the color itself. The cost of a vertex coloring is
∑

v∈V c(f (v)), where c(i) is the cost of color i. For any set
of costs, our proofs can be generalized to show that on the one hand, the minimum number of colors needed in a minimum
cost edge coloring of G is equal to χ ′(G) when G is bipartite or a multicycle, and on the other hand that a minimum cost
coloring can be computed in O(∆n) time for multicycles.
In fact, our results can be generalized to an even broader class of edge coloring problems. Given an edge coloring

f : E 7→ N, we define a cost C(f ) of the form:

C(f ) =
∑
i

c(i, |f −1(i)|),

where c : N×N 7→ R is a real function of a color i and an integer k, and f −1(i) is the set of edges e such that f (e) = i. Hence
the cost to minimize is a sum of the cost of each color class, itself defined as some function of the color and the size of the
color class.
In the minimum sum coloring problem, the function c is defined by
c(i, k) = i · k.

We further suppose that the functions c(i, k) satisfy the following property:
Given two nonincreasing integer sequences a1 ≥ a2 . . . ≥ an and b1 ≥ b2 . . . ≥ bn such that

j∑
i=1

ai ≥
j∑
i=1

bi, ∀j = 1, . . . , n,

we have
n∑
i=1

c(i, ai) ≤
n∑
i=1

c(i, bi). (1)

This property clearly holds in the minimum sum coloring problem. It formalizes the fact that when minimizing the cost
C(f ), we are looking for a distribution of the color class sizes that is as nonuniform as possible. In particular, when an element
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(edge or vertex) in a color class i is recolored with a color j < i, whose class is larger, then the objective function decreases.
This is the argument that we implicitly used in our proof of Theorem 4. It is also the argument that ensures the correctness
of the algorithms.
Property (1) can also be shown to hold (see [22]) when the following two conditions are satisfied:

1. c(i, k) = c(j, k) ∀i, j, that is, when the cost of a class only depends on its size, in which case wewill say that the functions
are separable,

2. the functions c(i, k) = c(k) are concave.

This is the case for instance in the minimum entropy edge coloring problem [23], for which c(k) = − km log
k
m . A number of

other coloring problems falling in that class were recently studied by Fukunaga, Halldórsson, and Nagamochi [22].
For all minimum cost edge coloring problems whose objective function satisfies (1), all our results apply. In fact, the

colorings that we compute are robust colorings, in the sense that they minimize every objective function satisfying the
above property.
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