1,790 research outputs found

    Perceived Barriers to Application of Glycaemic Index: Valid Concerns or Lost in Translation?

    Get PDF
    The term glycaemic-index (GI) originally appeared in the literature in the early 1980s. GI categorizes carbohydrate according to glycaemic effect postprandially. Since its inception, GI has obtained and maintained interest of academics and clinicians globally. Upon review of GI literature, it becomes clear that the clinical utility of GI is a source of controversy. Can and should GI be applied clinically? There are academics and clinicians on both sides of the argument. Certainly, this controversy has been a stimulus for the evolution of GI methodology and application research, but may also negatively impact clinicians’ perception of GI if misunderstood. This article reviews two assessments of GI that are often listed as barriers to application; the GI concept is (1) too complex and (2) too difficult for clients to apply. The literature reviewed does not support the majority of purported barriers, but does indicate that there is a call from clinicians for more and improved GI education tools and clinician GI education. The literature indicates that the Registered Dietitian (RD) can play a key role in GI knowledge translation; from research to application. Research is warranted to assess GI education tool and knowledge needs of clinicians and the clients they serve

    Blood pressure responses in healthy older people to 50 g carbohydrate drinks with differing glycaemic effects

    Get PDF
    The aim of the present study was to determine the effects on blood pressure response of 50 g carbohydrate drinks with differing glycaemic effects in ten healthy elderly subjects (age >65 years; randomized crossover design). Systolic (SBP), diastolic (DBP) and mean arterial (MAP) blood pressure, heart rate and plasma glucose levels were determined following ingestion of equal volumes (379 ml) of water and 50 g carbohydrate drinks with differing reported glycaemic indices (GI) (surrogate marker for glycaemic effect): (1) low-GI: Apple & Cherry Juice; (2) intermediate-GI: Fanta Orange; (3) high-glucose. Glucose (SBP and DBP P,0·001; MAP P¼0·005) and Fanta Orange (SBP P¼0·005; DBP and MAP P,0·001) ingestion caused a significant decrease in BP whilst blood pressure increased (SBP P¼0·008; MAP P¼0·005) from baseline following Apple & Cherry Juice ingestion. Water had no significant effect on postprandial blood pressure. Fanta Orange and Apple & Cherry Juice caused similar (P¼0·679) glycaemic effects, which were significantly greater than water, but lower than glucose (P,0·001). There was no significant correlation between the glycaemic effect of the carbohydrate drinks and there was no change in blood pressure from baseline (SBP r 20·123, P¼0·509; DBP r 20·051, P¼0·784; MAP r 20·069, P¼0·712). Apple & Cherry Juice and Fanta Orange had similar glycaemic effects, but differing effects on blood pressure. Therefore, it is unlikely that the glycaemic effect of a drink can be used to predict the subsequent cardiovascular response.Renuka Visvanathan, Richard Chen, Michael Horowitz and Ian Chapma

    Acute effect of meal glycemic index and glycemic load on blood glucose and insulin responses in humans

    Get PDF
    OBJECTIVE: Foods with contrasting glycemic index when incorporated into a meal, are able to differentially modify glycemia and insulinemia. However, little is known about whether this is dependent on the size of the meal. The purposes of this study were: i) to determine if the differential impact on blood glucose and insulin responses induced by contrasting GI foods is similar when provided in meals of different sizes, and; ii) to determine the relationship between the total meal glycemic load and the observed serum glucose and insulin responses. METHODS: Twelve obese women (BMI 33.7 ± 2.4 kg/m(2)) were recruited. Subjects received 4 different meals in random order. Two meals had a low glycemic index (40–43%) and two had a high-glycemic index (86–91%). Both meal types were given as two meal sizes with energy supply corresponding to 23% and 49% of predicted basal metabolic rate. Thus, meals with three different glycemic loads (95, 45–48 and 22 g) were administered. Blood samples were taken before and after each meal to determine glucose, free-fatty acids, insulin and glucagon concentrations over a 5-h period. RESULTS: An almost 2-fold higher serum glucose and insulin incremental area under the curve (AUC) over 2 h for the high- versus low-glycemic index same sized meals was observed (p < 0.05), however, for the serum glucose response in small meals this was not significant (p = 0.38). Calculated meal glycemic load was associated with 2 and 5 h serum glucose (r = 0.58, p < 0.01) and insulin (r = 0.54, p < 0.01) incremental and total AUC. In fact, when comparing the two meals with similar glycemic load but differing carbohydrate amount and type, very similar serum glucose and insulin responses were found. No differences were observed for serum free-fatty acids and glucagon profile in response to meal glycemic index. CONCLUSION: This study showed that foods of contrasting glycemic index induced a proportionally comparable difference in serum insulin response when provided in both small and large meals. The same was true for the serum glucose response but only in large meals. Glycemic load was useful in predicting the acute impact on blood glucose and insulin responses within the context of mixed meals

    Enrichment of Biscuits with Matcha Green Tea Powder: Its Impact on Consumer Acceptability and Acute Metabolic Response

    Get PDF
    Matcha green tea powder (MGTP) is made with finely ground green tea leaves that are rich in phytochemicals, most particularly catechins. Shortbread biscuits were enriched with MGTP and evaluated for consumer acceptability and potential functional health properties. Baking decreased the content of total catechins by 19% compared to dough, although epimerization increased the amount of (+)-gallocatechin gallate at the expense of other catechins such as (−)-epigallocatechin gallate. Consumer acceptability tests using a 9-point hedonic scale showed that consumers preferred enriched biscuits with low content of MGTP (2 g of MGTP 100 g−1 of flour), and an increase of sugar content did not significantly improve the acceptability of MGTP-enriched biscuits. Overall, enrichment of biscuits with MGTP did not significantly affect the postprandial glucose or triglyceride response (area under curve) compared to non-enriched biscuits consumed with water or MGTP drink. Enriching biscuits with Matcha green tea is acceptable to consumers, but may not bring significant postprandial effects

    Banner News

    Get PDF
    https://openspace.dmacc.edu/banner_news/1351/thumbnail.jp

    Lowering the glycemic index of white bread using a white bean extract

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phase 2<sup>® </sup>is a dietary supplement derived from the common white kidney bean (Phaseolus vulgaris). Phase 2 has been shown to inhibit alpha-amylase, the complex carbohydrate digesting enzyme, in vitro. The inhibition of alpha-amylase may result in the lowering of the effective Glycemic Index (GI) of certain foods. The objective of this study was to determine whether the addition of Phase 2 would lower the GI of a commercially available high glycemic food (white bread).</p> <p>Methods</p> <p>An open-label 6-arm crossover study was conducted with 13 randomized subjects. Standardized GI testing was performed on white bread with and without the addition of Phase 2 in capsule and powder form, each in dosages of 1500 mg, 2000 mg, and 3000 mg. Statistical analysis was performed by one-way ANOVA of all seven treatment groups using unadjusted multiple comparisons (t tests) to the white bread control.</p> <p>Results</p> <p>For the capsule formulation, the 1500 mg dose had no effect on the GI and the 2000 mg and 3000 mg capsule doses caused insignificant reductions in GI. For the powder, the 1500 mg and 2000 mg doses caused insignificant reductions in the GI, and the 3000 mg dose had a significant effect (-20.23 or 34.11%, p = 0.023)</p> <p>Conclusion</p> <p>Phase 2 white bean extract appears to be a novel and potentially effective method for reducing the GI of existing foods without modifying their ingredient profile.</p> <p>Trial Registration</p> <p>Trial Registration: ISRCTN50347345</p
    corecore