414 research outputs found

    The Role of Glucosamine-Induced ER Stress in Diabetic Atherogenesis

    Get PDF
    Cardiovascular disease (CVD) is the major cause of mortality in individuals with diabetes mellitus. However the molecular and cellular mechanisms that predispose individuals with diabetes to the development and progression of atherosclerosis, the underlying cause of most CVD, are not understood. This paper summarizes the current state of our knowledge of pathways and mechanisms that may link diabetes and hyperglycemia to atherogenesis. We highlight recent work from our lab, and others', that supports a role for ER stress in these processes. The continued investigation of existing pathways, linking hyperglycemia and diabetes mellitus to atherosclerosis, and the identification of novel mechanisms and targets will be important to the development of new and effective antiatherosclerotic therapies tailored to individuals with diabetes

    Human vault-associated non-coding RNAs bind to mitoxantrone, a chemotherapeutic compound

    Get PDF
    Human vaults are the largest cytoplasmic ribonucleoprotein and are overexpressed in cancer cells. Vaults reportedly function in the extrusion of xenobiotics from the nuclei of resistant cells, but the interactions of xenobiotics with the vault-associated proteins or non-coding RNAs have never been directly observed. In the present study, we show that vault RNAs (vRNAs), specifically the hvg-1 and hvg-2 RNAs, bind to a chemotherapeutic compound, mitoxantrone. Using an in-line probing assay (spontaneous transesterification of RNA linkages), we have identified the mitoxantrone binding region within the vRNAs. In addition, we analyzed the interactions between vRNAs and mitoxantrone in the cellular milieu, using an in vitro translation inhibition assay. Taken together, our results clearly suggest that vRNAs have the ability to bind certain chemotherapeutic compounds and these interactions may play an important role in vault function, by participating in the export of toxic compounds

    A Reusable Impedimetric Aptasensor for Detection of Thrombin Employing a Graphite-Epoxy Composite Electrode

    Get PDF
    Here, we report the application of a label-free electrochemical aptasensor based on a graphite-epoxy composite electrode for the detection of thrombin; in this work, aptamers were immobilized onto the electrodes surface using wet physical adsorption. The detection principle is based on the changes of the interfacial properties of the electrode; these were probed in the presence of the reversible redox couple [Fe(CN)6]3−/[Fe(CN)6]4− using impedance measurements. The electrode surface was partially blocked due to formation of aptamer-thrombin complex, resulting in an increase of the interfacial electron-transfer resistance detected by Electrochemical Impedance Spectroscopy (EIS). The aptasensor showed a linear response for thrombin in the range of 7.5 pM to 75 pM and a detection limit of 4.5 pM. The aptasensor was regenerated by breaking the complex formed between the aptamer and thrombin using 2.0 M NaCl solution at 42 °C, showing its operation for different cycles. The interference response caused by main proteins in serum has been characterized

    Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay

    Get PDF
    RNA aptamers that bind the opium alkaloid codeine were generated using an iterative in vitro selection process. The binding properties of these aptamers, including equilibrium and kinetic rate constants, were determined through a rapid, high-throughput approach using surface plasmon resonance (SPR) analysis to measure real-time binding. The approach involves direct coupling of the target small molecule onto a sensor chip without utilization of a carrier protein. Two highest binding aptamer sequences, FC5 and FC45 with K(d) values of 2.50 and 4.00 μM, respectively, were extensively studied. Corresponding mini-aptamers for FC5 and FC45 were subsequently identified through the described direct coupling Biacore assays. These assays were also employed to confirm the proposed secondary structures of the mini-aptamers. Both aptamers exhibit high specificity to codeine over morphine, which differs from codeine by a methyl group. Finally, the direct coupling method was demonstrated to eliminate potential non-specific interactions that may be associated with indirect coupling methods in which protein linkers are commonly employed. Therefore, in addition to presenting the first RNA aptamers to a subclass of benzylisoquinoline alkaloid molecules, this work highlights a method for characterizing small molecule aptamers that is more robust, precise, rapid and high-throughput than other commonly employed techniques

    A flow cytometry-based screen for synthetic riboswitches

    Get PDF
    Riboswitches regulate gene expression through direct, small molecule–mRNA interactions. The creation of new synthetic riboswitches from in vitro selected aptamers benefits from rapid, high-throughput methods for identifying switches capable of triggering dramatic changes in gene expression in the presence of a desired ligand. Here we present a flow cytometry-based screen for identifying synthetic riboswitches that induce robust increases in gene expression in the presence of theophylline. The performance characteristics of our newly identified riboswitches exceed those of previously described natural and synthetic riboswitches. Sequencing data and structure probing experiments reveal the ribosome binding site to be an important determinant of how well a switch performs and may provide insights into the design of new synthetic riboswitches

    Plasma folate levels are associated with the lipoprotein profile: a retrospective database analysis

    Get PDF
    BACKGROUND: Several studies demonstrated an association of homocysteine plasma levels and the plasma lipoprotein profile. This cross-sectional pilot study aimed at analyzing whether blood levels of the two important cofactors of homocysteine metabolism, folate and vitamin B12, coincide with the lipoprotein profile. METHODS: In a retrospective single center approach, we analyzed the laboratory database (2003-2006) of the University Hospital Bonn, Germany, including 1743 individuals, in whom vitamin B12, folate and at least one lipoprotein parameter had been determined by linear multilogistic regression. RESULTS: Higher folate serum levels were associated with lower serum levels of low density lipoprotein cholesterol (LDL-C; Beta = -0.164; p < 0.001), higher levels of high density lipoprotein cholesterol (HDL-C; Beta = 0.094; p = 0.021 for trend) and a lower LDL-C-C/HDL-C-ratio (Beta = -0.210; p < 0.001). Using ANOVA, we additionally compared the individuals of the highest with those of the lowest quartile of folate. Individuals of the highest folate quartile had higher levels of HDL-C (1.42 +/- 0.44 mmol/l vs. 1.26 +/- 0.47 mmol/l; p = 0.005), lower levels of LDL-C (3.21 +/- 1.04 mmol/l vs. 3.67 +/- 1.10 mmol/l; p = 0.001) and a lower LDL-C/HDL-C- ratio (2.47 +/- 1.18 vs. 3.77 +/- 5.29; p = 0.002). Vitamin B12 was not associated with the lipoprotein profile. CONCLUSION: In our study sample, high folate levels were associated with a favorable lipoprotein profile. A reconfirmation of these results in a different study population with a well defined status of health, diet and medication is warranted

    Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity

    Get PDF
    While many different RNA aptamers have been identified that bind to a plethora of small molecules only very few are capable of acting as engineered riboswitches. Even for aptamers binding the same ligand large differences in their regulatory potential were observed. We address here the molecular basis for these differences by using a set of unrelated neomycin-binding aptamers. UV melting analyses showed that regulating aptamers are thermally stabilized to a significantly higher degree upon ligand binding than inactive ones. Regulating aptamers show high ligand-binding affinity in the low nanomolar range which is necessary but not sufficient for regulation. NMR data showed that a destabilized, open ground state accompanied by extensive structural changes upon ligand binding is important for regulation. In contrast, inactive aptamers are already pre-formed in the absence of the ligand. By a combination of genetic, biochemical and structural analyses, we identified a switching element responsible for destabilizing the ligand free state without compromising the bound form. Our results explain for the first time the molecular mechanism of an engineered riboswitch

    Biomarkers of coagulation, endothelial function, and fibrinolysis in critically ill patients with COVID-19: A single-center prospective longitudinal study

    Get PDF
    Background: Immunothrombosis and coagulopathy in the lung microvasculature may lead to lung injury and disease progression in coronavirus disease 2019 (COVID-19). We aim to identify biomarkers of coagulation, endothelial function, and fibrinolysis that are associated with disease severity and may have prognostic potential. Methods: We performed a single-center prospective study of 14 adult COVID-19(+) intensive care unit patients who were age- and sex-matched to 14 COVID-19(−) intensive care unit patients, and healthy controls. Daily blood draws, clinical data, and patient characteristics were collected. Baseline values for 10 biomarkers of interest were compared between the three groups, and visualized using Fisher\u27s linear discriminant function. Linear repeated-measures mixed models were used to screen biomarkers for associations with mortality. Selected biomarkers were further explored and entered into an unsupervised longitudinal clustering machine learning algorithm to identify trends and targets that may be used for future predictive modelling efforts. Results: Elevated D-dimer was the strongest contributor in distinguishing COVID-19 status; however, D-dimer was not associated with survival. Variable selection identified clot lysis time, and antigen levels of soluble thrombomodulin (sTM), plasminogen activator inhibitor-1 (PAI-1), and plasminogen as biomarkers associated with death. Longitudinal multivariate k-means clustering on these biomarkers alone identified two clusters of COVID-19(+) patients: low (30%) and high (100%) mortality groups. Biomarker trajectories that characterized the high mortality cluster were higher clot lysis times (inhibited fibrinolysis), higher sTM and PAI-1 levels, and lower plasminogen levels. Conclusions: Longitudinal trajectories of clot lysis time, sTM, PAI-1, and plasminogen may have predictive ability for mortality in COVID-19

    O-GlcNAc Modification: Friend or Foe in Diabetic Cardiovascular Disease

    Get PDF
    O-Linked β-N-acetyl glucosaminylation (O-GlcNAcylation) is a dynamic post-translational modification that occurs on serine and threonine residues of cytosolic and nuclear proteins in all cell types, including those involved in the cardiovascular system. O-GlcNAcylation is thought to act in a manner analogous to protein phosphorylation. O-GlcNAcylation rapidly cycles on/off proteins in a time scale similar to that for phosphorylation/dephosphorylation of proteins. Several studies indicate that O-GlcNAc might induce nuclear localization of some transcription factors and may affect their DNA binding activities. However, at the cellular level, it has been shown that O-GlcNAc levels increase in response to stress and augmentation of this response suppresses cell survival. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are major hallmarks of type 2 diabetes and diabetes-related cardiovascular complications. Thus, O-GlcNAc and its metabolic functions are not yet well-understood; focusing on the role of O-GlcNAc in the cardiovascular system is a viable target for biomedical investigation. In this review, we summarize our current understanding of the role of O-GlcNAc on the regulation of cell function and survival in the cardiovascular system

    Grp78 promotes the invasion of hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glucose regulated protein 78 (Grp78) is involved in the invasion and metastasis in many human cancers including gastric cancer, breast cancer, prostate cancer. But the role of Grp78 in the invasion of human hepatocellular carcinoma has not been reported. In this article, we examined if Grp78 was associated with the invasion of hepatocellular carcinoma and explored the possible underlying mechanism.</p> <p>Methods</p> <p>The Grp78 and FAK expression levels in 44 patients with hepatocellular carcinoma were examined using immunohistochemistry. Grp78 overexpressing SMMC7721 cells were established by pcDNA3.1 (+)-Grp78 transfection and screened by G418. Grp78 and FAK levels in Grp78 overexpressing cells were down-regulated by siRNA transfection. The invasion status of tumor cells was evaluated by transwell assay in vitro, and chick embryo metastasis model in vivo. Cell spreading was determined by cell spreading assay, and quantitatively measured by Orisis software HUG. Grp78, pY397 FAK, pY576/577 FAK and FAK levels were detected by western blot. RhoA activity was detected by GST pulldown assay. The distribution of actin cytoskeleton was observed by fluorescent staining.</p> <p>Results</p> <p>Grp78 expression levels in 44 patients with hepatocellular carcinoma were negatively correlated with tumor grading, and positively correlated with portal invasion and intra-hepatic invasion. Overexpression of Grp78 in SMMC7721 cells promoted the invasion of cancer cells in vitro and in vivo, and this increase in tumor cell invasion was blocked by Grp78 siRNA knockdown. Our results also revealed that overexpression of Grp78 in SMMC7721 cells accelerated the process of cell spreading and promoted lamellipodia formation. Further analysis showed that overexpression of Grp78 in SMMC7721 cells increased pY397 and pY576/577 levels of FAK. Grp78 siRNA knockdown decreased FAK activation and activity. Our results also revealed that Grp78 overexpression in SMMC7721 cells decreased RhoA-GTP level, and Grp78 siRNA knockdown rescued RhoA-GTP level in Grp78 overexpressing cells, indicating Grp78 inhibited RhoA activity in hepatocellular carcinoma cells. Furthermore, overexpression of Grp78 in SMMC7721 cells increased phospho-p190RhoGAP level. FAK siRNA knockdown in Grp78 overexpressing cells reversed phospho-p190RhoGAP level. These data suggested that Grp78 inhibited RhoA activity by up-regulated phospho-p190RhoGAP level and Grp78 mediated p190RhoGAP phosphorylation is FAK dependent.</p> <p>Conclusion</p> <p>Grp78 promoted the invasion of hepatocellular carcinoma both in vitro and in vivo. Overexpression of Grp78 in hepatocellular carcinoma cells enhanced the activation and activity of FAK which negatively regulated Rock kinase activity by promoting the phosphorylation of p190RhoGAP.</p
    corecore