36 research outputs found

    Impaired Sprouting and Axonal Atrophy in Cerebellar Climbing Fibres following In Vivo Silencing of the Growth-Associated Protein GAP-43

    Get PDF
    The adult mammalian central nervous system has a limited ability to establish new connections and to recover from traumatic or degenerative events. The olivo-cerebellar network represents an excellent model to investigate neuroprotection and repair in the brain during adulthood, due to its high plasticity and ordered synaptic organization. To shed light on the molecular mechanisms involved in these events, we focused on the growth-associated protein GAP-43 (also known as B-50 or neuromodulin). During development, this protein plays a crucial role in growth and in branch formation of neurites, while in the adult it is only expressed in a few brain regions, including the inferior olive (IO) where climbing fibres (CFs) originate. Following axotomy GAP-43 is usually up-regulated in association with regeneration. Here we describe an in vivo lentiviral-mediated gene silencing approach, used for the first time in the olivo-cerebellar system, to efficiently and specifically downregulate GAP-43 in rodents CFs. We show that lack of GAP-43 causes an atrophy of the CF in non-traumatic conditions, consisting in a decrease of its length, branching and number of synaptic boutons. We also investigated CF regenerative ability by inducing a subtotal lesion of the IO. Noteworthy, surviving CFs lacking GAP-43 were largely unable to sprout on surrounding Purkinje cells. Collectively, our results demonstrate that GAP-43 is essential both to maintain CFs structure in non-traumatic condition and to promote sprouting after partial lesion of the IO

    Neuropsin is essential for early processes of memory acquisition and Schaffer collateral long-term potentiation in adult mouse hippocampus in vivo

    No full text
    Long-term potentiation (LTP) is thought to be particularly important in the acquisition of hippocampus-associated memory, in part because it develops quickly and persists for indefinite periods. Extracellular proteolysis has been hypothesized to contribute to LTP by modifying adhesive relations of synapses and thus the morphology of excitatory synapses. Here we report that neuropsin (NP), an extracellular serine protease, is critically involved in the formation of both the potentiation effect and hippocampus-dependent forms of memory. NP-knockout mice were significantly impaired in the Morris water maze and Y-mazes and failed to exhibit early phase LTP induced by a single tetanus. Potentiation was also impaired or completely blocked by in vivo application of a specific inhibitor or a neutralizing monoclonal antibody for NP. Intriguingly, recombinant (r-) NP alone, without tetanic stimulation, elicited either long-lasting potentiation or depression, depending on the applied dose. The r-NP-elicited potentiation was occluded by prior induction of LTP, while theta-burst-elicited LTP was occluded by application of r-NP alone, suggesting that the two forms of plasticity have a common signalling pathway. r-NP-elicited potentiation and depression increased phosphorylation at different sites on the GluR1 subunit of the AMPA receptor that had previously been associated with LTP or long-term depression. Thus, we conclude that NP is necessary for establishment of LTP and has a significant role in memory acquisition
    corecore