431 research outputs found

    In Vivo Healing of Meniscal Lacerations Using Bone Marrow-Derived Mesenchymal Stem Cells and Fibrin Glue

    Get PDF
    Fibrin glue created from a patient's own blood can be used as a carrier to deliver cells to the specific site of an injury. An experimental model for optimizing various permutations of this delivery system in vivo was tested in this study. Harvested equine meniscal sections were reapposed with fibrin glue or fibrin glue and equine bone marrow-derived mesenchymal stem cells (BMSCs). These constructs were then implanted subcutaneously in nude mice. After harvesting of the constructs, BMSC containing constructs showed significantly increased vascularization, and histology showed subjectively decreased thickness of repair tissue and increased total bonding compared to fibrin alone constructs. This model allowed direct comparison of different meniscal treatment groups while using a small number of animals. This in vivo model could be valuable in the future to optimize fibrin and cellular treatments for meniscal lesions in the horse and potentially humans as well

    Sustained delivery of bioactive TGF-β1 from self-assembling peptide hydrogels induces chondrogenesis of encapsulated bone marrow stromal cells

    Get PDF
    Tissue engineering strategies for cartilage defect repair require technology for local targeted delivery of chondrogenic and anti-inflammatory factors. The objective of this study was to determine the release kinetics of transforming growth factor β1 (TGF-β1) from self-assembling peptide hydrogels, a candidate scaffold for cell transplant therapies, and stimulate chondrogenesis of encapsulated young equine bone marrow stromal cells (BMSCs). Although both peptide and agarose hydrogels retained TGF-β1, fivefold higher retention was found in peptide. Excess unlabeled TGF-β1 minimally displaced retained radiolabeled TGF-β1, demonstrating biologically relevant loading capacity for peptide hydrogels. The initial release from acellular peptide hydrogels was nearly threefold lower than agarose hydrogels, at 18% of loaded TGF-β1 through 3 days as compared to 48% for agarose. At day 21, cumulative release of TGF-β1 was 32–44% from acellular peptide hydrogels, but was 62% from peptide hydrogels with encapsulated BMSCs, likely due to cell-mediated TGF-β1 degradation and release of small labeled species. TGF-β1 loaded peptide hydrogels stimulated chondrogenesis of young equine BMSCs, a relevant preclinical model for treating injuries in young human cohorts. Self-assembling peptide hydrogels can be used to deliver chondrogenic factors to encapsulated cells making them a promising technology for in vivo, cell-based regenerative medicine.National Institutes of Health (U.S.) (NIH EB003805)National Institutes of Health (U.S.) (NIH AR60331)National Institutes of Health (U.S.). Molecular, Cell, and Tissue Biomechanics (Training Grant Fellowship)Arthritis Foundation (postdoctoral fellowship

    Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair

    Get PDF
    Objective The goal of this study was to test the ability of an injectable self-assembling peptide (KLD) hydrogel with or without chondrogenic factors (CF) and allogeneic bone marrow stromal cells (BMSCs) to stimulate cartilage regeneration in a full-thickness, critically-sized, rabbit cartilage defect model in vivo. We used CF treatments to test the hypotheses that CF would stimulate chondrogenesis and matrix production by cells migrating into acellular KLD (KLD + CF) or by BMSCs delivered in KLD (KLD + CF + BMSCs). Design Three groups were tested against contralateral untreated controls: KLD, KLD + CF, and KLD + CF +BMSCs, n = 6–7. Transforming growth factor-β1 (TGF-β1), dexamethasone, and insulin-like growth factor-1 (IGF-1) were used as CF pre-mixed with KLD and BMSCs before injection. Evaluations included gross, histological, immunohistochemical and radiographic analyses. Results KLD without CF or BMSCs showed the greatest repair after 12 weeks with significantly higher Safranin-O, collagen II immunostaining, and cumulative histology scores than untreated contralateral controls. KLD + CF resulted in significantly higher aggrecan immunostaining than untreated contralateral controls. Including allogeneic BMSCs + CF markedly reduced the quality of repair and increased osteophyte formation compared to KLD-alone. Conclusions These data show that KLD can fill full-thickness osteochondral defects in situ and improve cartilage repair as shown by Safranin-O, collagen II immunostaining, and cumulative histology. In this small animal model, the full-thickness critically-sized defect provided access to the marrow, similar in concept to abrasion arthroplasty or spongialization in large animal models, and suggests that combining KLD with these techniques may improve current practice.National Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.) Grant EB003805)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Science Foundation (U.S.). Graduate Research FellowshipNational Institutes of Health (U.S.) (Grant EB003805)National Institutes of Health (U.S.) (Grant AR33236)Arthritis Foundation (Postdoctoral Fellowship

    Mechanical Stimulation Increases Knee Meniscus Gene RNA-level Expression in Adipose-derived Stromal Cells

    Get PDF
    Background: Efforts have been made to engineer knee meniscus tissue for injury repair, yet most attempts have been unsuccessful. Creating a cell source that resembles the complex, heterogeneous phenotype of the meniscus cell remains difficult. Stem cell differentiation has been investigated, mainly using bone marrow mesenchymal cells and biochemical means for differentiation, resulting in no solution. Mechanical stimulation has been investigated to an extent with no conclusion. Here, we explore the potential for and effectiveness of mechanical stimulation to induce the meniscal phenotype in adipose-derived stromal cells. Methods: Human adipose-derived stromal cells were chosen for their fibrogenic nature and conduciveness for chondrogenesis. Biochemical and mechanical stimulation were investigated. Biochemical stimulation included fibrogenic and chondrogenic media. For mechanical stimulation, a custom-built device was used to apply constant, cyclical, uniaxial strain for up to 6 hours. Strain and frequency varied. Results: Under biochemical stimulation, both fibrogenic (collagen I, versican) and chondrogenic (collagen II, Sox9, aggrecan) genes were expressed by cells exposed to either fibrogenic or chondrogenic biochemical factors. Mechanical strain was found to preferentially promote fibrogenesis over chondrogenesis, confirming that tensile strain is an effective fibrogenic cue. Three hours at 10% strain and 1 Hz in chondrogenic media resulted in the highest expression of fibrochondrogenic genes. Although mechanical stimulation did not seem to affect protein level expression, biochemical means did affect protein level presence of collagen fibers. Conclusion: Mechanical stimulation can be a useful differentiation tool for mechanoresponsive cell types as long as biochemical factors are also integrated

    The Effect of Self-Assembling Peptide RADA16-I on the Growth of Human Leukemia Cells in Vitro and in Nude Mice

    Get PDF
    Nanofiber scaffolds formed by self-assembling peptide RADA16-I have been used for the study of cell proliferation to mimic an extracellular matrix. In this study, we investigated the effect of RADA16-I on the growth of human leukemia cells in vitro and in nude mice. Self-assembly assessment showed that RADA16-I molecules have excellent self-assembling ability to form stable nanofibers. MTT assay displayed that RADA16-I has no cytotoxicity for leukemia cells and human umbilical vein endothelial cells (HUVECs) in vitro. However, RADA16-I inhibited the growth of K562 tumors in nude mice. Furthermore, we found RADA16-I inhibited vascular tube-formation by HUVECs in vitro. Our data suggested that nanofiber scaffolds formed by RADA16-I could change tumor microenvironments, and inhibit the growth of tumors. The study helps to encourage further design of self-assembling systems for cancer therapy.China. Ministry of Education (project 985

    Chondrogenic potential of injectable κ-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications

    Get PDF
    Due to the limited self-repair capacity of cartilage, regenerative medicine therapies for the treatment of cartilage defects must use a significant amount of cells, preferably applied using a hydrogel system that can promise their delivery and functionality at the specific site. This paper discusses the potential use of k-carrageenan hydrogels for the delivery of stem cells obt ained from adipose tissue in the treatment of cartilage tissue defects. The developed hydrogels were produced by an ionotropic gelation met hod and human adipose stem cells (hASCs) were encapsulated in 1.5% w/v k-carrageenan solution at a cell density of 5 10 6 cells/ml. The results from the analysis of the cell-encapsulating hydrogels, cultured for up to 21 days, indicated that k-carrageenan hydrogels support the viability, proliferation and chondrogenic differentiation of hASCs. Additionally, the mec hanical analysis demonstrated an increase in stiffness and viscoelastic properties of k-carrageenan gels with their encapsulated cells with increasing time in culture with chondrogenic medium. These results allowed the conclusion that k-carrageenan exhibits properties t hat enable the in vitro functionality of encapsulated hASCs and thus may provide the basis for new successful approaches for the treatment of cartilage defects.Elena G. Popa would like to acknowledge the Portuguese Foundation for Science and Technology (PhD Grant No. SFRH/BD/64070/2009)

    Ultrasmall Peptides Self-Assemble into Diverse Nanostructures: Morphological Evaluation and Potential Implications

    Get PDF
    In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembly and morphology of resulting nanostructures. Whereas aliphatic peptides formed long, helical fibers that entangle into meshes and entrap >99.9% water, the modified peptides contrastingly formed short, straight fibers with a flat morphology. No helical fibers were observed for the modified peptides. For the aliphatic peptides at low concentrations, different supramolecular assemblies such as hollow nanospheres and membrane blebs were found. Since the ultrasmall peptides are made of simple, aliphatic amino acids, considered to have existed in the primordial soup, study of these supramolecular assemblies could be relevant to understanding chemical evolution leading to the origin of life on Earth. In particular, we propose a variety of potential applications in bioengineering and nanotechnology for the diverse self-assembled nanostructures

    Preconditioning of mesenchymal stromal cells with low-intensity ultrasound: influence on chondrogenesis and directed SOX9 signaling pathways

    Get PDF
    Background: Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFβ) by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein expression under cLIUS. Methods: Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression, immunofluorescence staining, and western blotting. Results: cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9 expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2. Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9. The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2. Conclusions: Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9, phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the phosphorylation of ERK1/2 under cLIUS
    corecore