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RESEARCH Open Access

Preconditioning of mesenchymal stromal
cells with low-intensity ultrasound:
influence on chondrogenesis and directed
SOX9 signaling pathways
Neety Sahu1,2, Gaurav Budhiraja1 and Anuradha Subramanian3*

Abstract

Background: Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human
mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFβ)
by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present
study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein
expression under cLIUS.

Methods: Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for
5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS
was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by
cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression,
immunofluorescence staining, and western blotting.

Results: cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein
when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling
molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9
expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2.
Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of
ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other
mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor
regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled
actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9.
The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation
induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2.

Conclusions: Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9,
phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the
phosphorylation of ERK1/2 under cLIUS.
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Background
As cartilage does not have the innate potential to regener-
ate, lesions frequently result in large-scale degenerative
changes and osteoarthritis (OA) [1, 2]. The clinical out-
comes of current strategies of cartilage repair autologous
chondrocyte implantation (ACI) or matrix-assisted autolo-
gous chondrocyte implantation (MACI) are compromised
by the phenotypic instability of expanded autologous chon-
drocytes ex vivo [3, 4] that leads to graft hypertrophy [5]
and the formation of a mechanically inferior tissue in vivo.
Therefore, regenerative approaches that employ progenitor
cells such as mesenchymal stromal cells (MSCs) to im-
prove cartilage repair outcomes are of interest.
Taking cues from the in vivo regulation of MSC chon-

drogenesis, current in vitro protocols include select
growth factors (i.e., TGFβ) for differentiation of MSCs
[6]. However, long-term conditioning of MSCs with
TGFβ induces hypertrophy [5, 7] and calcification [8]
upon terminal differentiation, leading to endochondral
ossification instead of hyaline cartilage formation. Thus,
chondroinductive protocols that do not rely on growth
factors are of interest for the eventual development of
ex vivo differentiation protocols for ACI and in situ re-
pair strategies like microfracture.
Previously, a variety of biophysical stimuli, including

mechanical stimulation, have been extensively studied in
directing the differentiation of MSCs both in the absence
and presence of growth factors [9–15]. Synergistic applica-
tion of TGFβ with biomechanical forces yielded superior
chondrogenic differentiation of MSCs in vitro, as evidenced
by elevated expression of chondrocyte markers (Collagen II,
SOX9, and aggrecan) [13, 14, 16]. However, as the mechan-
ical stimulus was applied concurrently with TGFβ, the
chondroinductive potential of the mechanical stimulus
alone becomes indiscernible. Therefore, studies that critic-
ally examine MSC chondrogenesis in the absence of ex-
ogenously added growth factors are of significance.
In that regard, electrical stimulation and dynamic

compressive loading have been documented to induce
in vitro MSC chondrogenesis without the assistance of
growth factors, as measured by the increased expression
of chondrocyte markers, biochemical content, and
mechanical stiffness over controls [12, 17–19], albeit the
outcomes were inferior when compared to TGFβ-
preconditioning [20–22]. Therefore, alternative methods
of mechanical stimulation, including low-intensity ultra-
sound (LIUS), were explored for preconditioning MSCs
toward a chondrogenic phenotype [23–25].
Low-intensity ultrasound (0.8 to 1.5MHz, < 200mW/

cm2), applied as pulsed (pLIUS) or continuous (cLIUS)
wave, has been documented to enhance the chondrocyte
phenotype [26–28], improve cartilage repair [29, 30],
and induce MSC chondrogenesis in vitro [25, 31] and
in vivo [32], notably in the absence of exogenous

chondroinductive biochemical factors [24, 33–35]. How-
ever, the growth factor-independent chondrogenic effect
of pLIUS and cLIUS was either non-existent [31] or
modest as evidenced by marginal increases in GAG and
collagen content in 3D cultures of differentiated MSCs
[34]. Differently from previous studies employing pLIUS
or cLIUS at empirically derived frequencies (~ 1MHz),
theoretical modeling and experimental investigations
conducted in our laboratory established that cLIUS
couples more energy than pLIUS and cellular bioeffects
are maximized at the cell resonant frequency of 5MHz
[36, 37]. For example, the long-term culture of MSC
constructs receiving pLIUS stimulation at 1.5MHz, a
frequency outside the resonant bandwidth [36, 37], pro-
duced a substantially lower chondrogenic effect as evi-
denced by decreased biochemical content (GAG and
collagen II) when compared to cLIUS stimulation at 5
MHz [34]. Additionally, the exposure of MSC constructs
to cLIUS (5MHz) for 8 weeks prevented the hyper-
trophic differentiation of MSCs by downregulating the
expression of collagen X, a hypertrophic marker while
sustaining the elevated expression of hyaline cartilage
markers (SOX9 and collagen II) [38]. Taken together,
cLIUS at 5MHz was noted to be chondroinductive by
acting as a stable inducer of chondrogenic differentiation
in MSCs. Enhanced expression of the transcription
factor SOX9, the master regulator of chondrogenesis
[39–42], was observed in MSCs under pLIUS or cLIUS
stimulation [24, 35, 38]; however, the underlying signal-
ing events governing the upregulation of SOX9 are
poorly understood.
In chondrocytes, a variety of signaling molecules are

involved in the regulation of SOX9 [39, 41–45]. TGFβ
induces chondrogenesis by regulating the phosphoryl-
ation of SOX9 through the SMAD (canonical) and p38
MAPK pathway (non-canonical) [43, 46, 47]. Mechanical
stimulation by compressive loading was also reported to
regulate the phosphorylation of SOX9 during MSC
chondrogenesis by PKA [48] or by the autocrine TGFβ/
SMAD [16] pathways. Despite the evidence of MSC
chondrogenesis under mechanical stimulation in the
absence of exogenously added TGFβ [20, 34, 49], the in-
volvement of signaling cascades that regulate the gene
expression of SOX9 is limited.
Long-term culture of scaffold-seeded with MSCs under

cLIUS at 5MHz, yielded a sustained and elevated expres-
sion of collagen II and glycosaminoglycan (GAG), notably
in the absence of exogenously added growth factor TGFβ
[38]. Our collective data indicated that cLIUS was chon-
droinductive as evidenced by the expression of cartilage-
specific markers, notably SOX9 [41, 40, 58, 73]. Thus,
gaining a better understanding of the molecular events in-
volved in the regulation of the expression of SOX9 in
MSCs under cLIUS can help develop preconditioning
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protocols based on cLIUS. We postulate that cell-surface
receptors (integrin, TRPV4), key intracellular signaling
molecules (ERK1/2, PKA), and the actin cytoskeleton are
involved in transducing cLIUS stimulus leading to the ex-
pression of SOX9 in MSCs and are schematically illus-
trated in Fig. 1. To our knowledge, this is the first study
that seeks to elucidate the underlying signaling events that
regulate SOX9 upon cLIUS stimulation in MSCs. Thus,
the assessment of select signaling molecules that are in-
volved in regulating SOX9 under cLIUS was undertaken.
Specificity was established using small molecule inhibitors
of select signaling molecules. The study was motivated by
the potential of cLIUS, a clinically translatable mode of
stimulation in cartilage regeneration and rehabilitation.

Methods
2D culture of MSCs
Human MSCs were purchased from Lonza (PT-2501,
Walkersville, MD, USA) and expanded in alpha-Minimum

Essential Medium (α-MEM) supplemented with 10%
MSC-qualified fetal bovine serum (FBS) (Gibco, USA), 1×
Glutamax (Gibco, USA), and 1× antibiotic-antimycotic so-
lution (Gibco, USA) in a CO2 incubator at 37 °C, 5% car-
bon dioxide, and 99% humidity. MSCs harvested from
passage 4–5 were employed in all experiments. MSCs
were plated in 12-well TCP at following seeding densities:
1 × 105 cells/well (RNA and protein extractions following
treatment with inhibitors and non-treated controls), 1 ×
104 cells/well (for immunofluorescence studies following
treatment with inhibitors and non-treated controls), 2 ×
104 cells/well (for RNA decay assay). All treatments with
inhibitors and/or cLIUS were conducted after 24 h of ini-
tial seeding of MSCs in TCP.

Treatment with inhibitors
MSCs were cultured in 12-well TCPs at 1 × 105 seeding
density per well (for RNA and protein extraction) with
α-MEM medium supplemented with 10% MSC-qualified

Fig. 1 Schematic representation of the possible SOX9-directed pathways under cLIUS stimulation. The diagram shows putative signaling
pathways that may be activated upon cLIUS stimulation in MSCs leading to the gene expression of SOX9 and its target gene COL2A1. Select
intracellular signaling molecules (ERK1/2 and PKA), upstream effectors (integrin and TRPV4), and the actin cytoskeleton were targeted by
pharmacological inhibition to investigate the involvement of integrin-MAPK or calcium signaling through TRPV4 pathways leading to SOX9
upregulation under cLIUS in MSCs
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FBS, 1× Glutamax (Gibco, USA), and 1× antibiotic-
antimycotic solution. For immunofluorescence staining,
the 1 × 104 cells per well were seeded onto sterilized 15-
mm coverslips placed at the bottom of each well of a 12-
well TCP. The MSCs were serum-starved prior to
treatment with inhibitors by removing the growth medium
containing 10% MSC-qualified FBS and replacing it with
low serum medium containing 1% MSC-qualified FBS
overnight. The serum-starved cells were incubated for 4 h
in medium containing inhibitors solubilized in DMSO:
100 μg/ml GRGDSP (Sigma, USA), 50 μM PD98059 (Cell
Signaling Technology, USA), 30 μM RN1738 (Tocris,
USA), and 10 μM Y-27632 (Cell Signaling Technology,
USA) separately for the inhibition of integrin, MEK/ERK1/
2, and ROCK respectively prior to cLIUS stimulation.
Non-cLIUS-treated MSCs incubated in medium contain-
ing DMSO (0.125% v/v) served as controls.

cLIUS treatment regimen of 2D MSC cultures
Non-focused immersion transducers (Panametrics V300,
12.7 mm diameters, Panametrix, Waltham, MA, USA)
were used to apply cLIUS (< 30 mW/cm2) to MSCs
plated in 12-well TCP. The volume of medium per well
was maintained at 4 ml to ensure complete immersion
of ultrasound transducers in the well for effective propaga-
tion of ultrasound waves. Care was taken to avoid contact
of the transducer surface to the cell layer at the bottom of
the TCP. For cLIUS frequency study, cLIUS was applied
at 5MHz (2.5 Vpp), 2MHz (6 Vpp), or 8MHz (9.5 Vpp)
at constant pressure amplitude of 14 kPa one time for 5
min. For inhibitor studies and RNA decay assay, cLIUS
was applied one time for 5min at 5MHz (2.5 Vpp) with
constant pressure amplitude of 14 kPa and subjected to
qRT-PCR. For inhibitor studies, western blotting and im-
munofluorescence staining were conducted in addition to
qRT-PCR following cLIUS stimulation.

Quantitative RT-PCR (qRT-PCR)
Total RNA was isolated after 1 h upon cLIUS stimula-
tion of MSCs in 2D. MSCs that received no cLIUS
stimulation served as controls. Briefly, the medium was
removed and cells were washed with HBSS (Gibco,
USA). Cells were then lysed by adding 100 μl of Trizol
(Invitrogen, USA) per well. RNA was then extracted
from the homogenized cell lysates using the RNeasy
Mini Kit (Qiagen, USA) as per manufacturer’s protocol.
Cell lysates pooled from two wells served as one repli-
cate. Three such replicates from three independent ex-
periments were used for analysis (n = 3). qRT-PCR was
carried out in Realplex™ real-time PCR system (Eppen-
dorf, USA) using TaqMan® RNA-to-CT™ 1-Step Kit (Life
Technologies, USA) as per the manufacturer’s guide-
lines. TaqMan® probes (Life Technologies, USA) for
SOX9 (Hs00165814_m1) was used to quantify mRNA

expression of SOX9. The expression of mRNA tran-
scripts was normalized to the housekeeping gene,
GAPDH (Hs02786624_g1); expression and relative ex-
pression levels were calculated using the 2−ΔΔCt method.

Protein isolation and western blotting
Following treatment with inhibitors and/or cLIUS stimu-
lation in 2D MSC cultures, total protein was isolated
within 15min of cLIUS stimulation (n = 3 biological rep-
licates per group) as phosphorylation events are transi-
ent in nature. MSCs that received no cLIUS stimulation
in the presence or absence of inhibitors served as re-
spective controls. Briefly, the medium was removed, and
cells were rinsed thoroughly in HBSS (Gibco, USA). The
cells were lysed by adding 100 μl of Pierce IP lysis buffer
(Thermo Scientific, Rockford, IL, USA) supplemented
with 1× Halt protease and phosphatase inhibitor cocktail
and 1X EDTA (Thermo Scientific, Rockford, IL, USA)
per well. The cell lysates were centrifuged at 13,000g for
15 min, and the supernatant was used for protein quanti-
fication by standard BCA assay (QuantiPro™ BCA Assay
Kit, Sigma-Aldrich, USA) as per the manufacturer’s
guidelines. SDS-PAGE was conducted using NuPAGE
gels (Invitrogen, USA) per the manufacturer’s instruc-
tions. Briefly, 20 μg protein in NuPAGE 4X lithium do-
decyl sulfate sample buffer and NuPAGE 10× sample
reducing agent was denatured at 75 °C for 15 min and
loaded onto wells of 4–12% NuPAGE bis-tris gels, and
electrophoresis was carried out. Proteins separated by
SDS-PAGE were then transferred onto the PVDF mem-
brane. Membranes were then blocked with 2% goat
serum in 1× TBST (tris buffer saline with 0.1% tween20)
for 2 h and incubated separately with primary antibodies:
rabbit anti-phospho-p44/42 MAPK (ERK1/2) and p44/
42 MAPK (ERK1/2) (catalog numbers 4377 and 4695,
Cell Signaling Technology, USA) at a dilution of 1:1000
overnight at 4 °C. β-actin (catalog number 8H10D10,
Cell Signaling Technology) or α-tubulin (catalog number
2144S, Cell Signaling Technology) was used as a loading
control at a dilution of 1:5000. Following copious wash-
ing in TBST, the blots were incubated with HRP conju-
gated anti-rabbit IgG (1:5000 dilution, catalog number
A0525, Sigma-Aldrich, USA) or anti-mouse IgG (1:
10000 dilution, catalog number 12-349, Millipore-Sigma)
for 2 h at room temperature. The blots were washed in
TBST and then visualized by incubating with Clarity™
western ECL kit (Bio-Rad, USA) as per manufacturer’s
instructions, finally captured with hyperfilm™ ECL (GE
Healthcare Amersham™, USA). The blots were quantified
by ImageJ™ software.

Immunofluorescence staining
MSCs were seeded at a density of 1 × 104 cells per cover-
slip per well in 12-well TCP. Immediately after
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treatment with inhibitors with or without cLIUS stimu-
lation (5 min), MSCs were fixed in 4% paraformaldehyde
for 20 min (n = 3). The cells were then rinsed in PBS and
blocked with 2% goat serum in 1× TBST for 2 h. The
blocking solution was removed, and the cells were incu-
bated with a primary monoclonal antibody raised in
rabbit against SOX9 (1:200 dilution, Catalog number
82630, Cell Signaling Technology, USA) at 4 °C over-
night. After primary antibody incubation, the cells were
washed with 1× TBST and incubated for 2 h at room
temperature with goat anti-rabbit IgG conjugated with
Alexa Fluor 488 (1:50 dilution, catalog number
ab150077, Abcam, USA) followed by incubation with
phalloidin-Alexa Fluor 594 (1:50 dilution, catalog num-
ber A12381, Molecular Probes, USA) for 30 min and
staining with 300 nM DAPI (D1306, Molecular Probes,
USA) for 5 min. The coverslips were rinsed and
mounted onto glass slides with Prolong™ Gold antifade
mountant (Invitrogen, USA) and viewed under a con-
focal microscope (Olympus IX81) at a magnification of
×60 (z step size = 5 μm). The fluorescence staining inten-
sity in the images (n = 10–20 per group) from three in-
dependent experiments was quantified by measuring the
integrated density of the cells using ImageJ software
(NIH, Bethesda, USA). Quantification of actin filament
number and length were measured by FilaQuant soft-
ware (the University of Rostock, Institute of Mathemat-
ics, Mathematical Optimization) per user guidelines.

Intracellular Ca++staining
MSCs were plated at an initial seeding density of 2 × 105

cells/well. MSCs were pre-treated with the Fluo-4-AM
probe (Catalog number F14201, Thermo Fisher Scien-
tific, USA) at a concentration of 3 μM/ml in recording
medium (20 mM HEPES, 115 mM NaCl, 5.4 mM KCl,
0.8 mM MgCl2, 1.8 mM CaCl2, 13.8 mM glucose) for 20
min, after which the medium was replaced with record-
ing medium without Fluo-4-AM. Intracellular calcium
was visualized 5 min after cLIUS stimulation (5MHz. 2.5
Vpp, 5 min) under a fluorescence microscope at × 5
magnification (n = 3). Non-cLIUS-stimulated MSCs
served as controls (n = 3).

RNA decay assay
MSCs were cultured in 12-well TCP at a seeding density
of 2 × 104 cells per well in DMEM supplemented with
10% FBS, 1× antibiotic-antimycotic solution, and 25 μg/ml
ascorbic acid. For RNA decay study, medium containing
FBS was removed and replaced with a serum-free
medium. cLIUS was then applied to the wells at 5MHz
and 2.5 Vpp for 15min (n = 3). After cLIUS stimulation,
the medium was immediately removed and replaced with
serum-free DMEM containing 5 μg/ml actinomycin D
(Cell Signaling Technology, USA). At each time point of

0 h, 0.5 h, 1 h, and 2 h post-actinomycin D treatment, the
medium was removed and followed by total RNA extrac-
tion and qRT-PCR. Non-cLIUS-treated samples served as
controls. Parallelly, MSCs were stimulated with cLIUS at
5MHz and 2.5 Vpp for 15min without subsequent acti-
nomycin D treatment, and RNA was extracted at the
aforementioned time points and subjected to qRT-PCR
for measuring the relative amount of SOX9 mRNA tran-
scripts in the presence and absence of actinomycin D.
The ΔΔCt method is used for calculations. Ct values

were first normalized to GAPDH and then normalized
to the respective samples before the addition of actino-
mycin D, which were set to 1 [50]. This gives the decay
of SOX9 mRNA over time. To calculate the amount of
SOX9 mRNA transcripts at each time point, the Ct
values (normalized to GAPDH first) of samples in the
presence of actinomycin D were normalized to the Ct
value of the sample in the absence of actinomycin D at
respective time points.

3D encapsulation and culture of MSCs
MSCs were encapsulated in hyaluronan-based hydrogel
using the HyStem-C hydrogel kit purchased from ESI-
BIO (CA, USA) as per manufacturer’s instructions with
slight modifications. Briefly, the hydrogel was prepared
by mixing 2% Glycosil, 1% Gelin-S, and 4% Extralink so-
lution supplied in the kit. Passage 4 MSCs were then
harvested and resuspended in the hydrogel solution at
an encapsulation density of 5 × 106 cells/ml hydrogel.
MSC-laden hydrogels were cast in sterile cylindrical in-
serts (4 mm height, 3 mm diameter) by pipetting 300 μl
of the hydrogel-MSC mixture into the inserts. The in-
serts were then carefully removed after the solidification
of MSC-laden hydrogels which typically ensued within
(two constructs per well) were cultured in six-well tissue
culture plates (TCP) in DMEM-high glucose medium
supplemented with 10% fetal bovine serum (FBS) (Gibco,
USA), 100 nM dexamethasone, 50 μg/ml ascorbic acid,
and 1× antibiotic-antimycotic solution (Gibco, USA) at
37 °C and 5% CO2 with or without cLIUS for 6 weeks.

cLIUS treatment regimen of 3D MSC constructs
Six-well TCPs containing MSC-hydrogel constructs were
placed in plate holders of a cLIUS-assisted incubator de-
veloped at the Department of Chemical Engineering,
University of Nebraska-Lincoln (UNL), USA, with oper-
ating procedures detailed elsewhere [51]. cLIUS was ap-
plied to the plates at 5MHz frequency and 2.5 Vpp (14
kPa) for 20 min per application at four applications/day
for a period of 6 weeks. At the end of 6 weeks, the con-
structs (n = 3) were fixed in 10% neutral buffered saline
prior to immunohistochemistry. Non-cLIUS-treated
constructs served as controls and were cultured in a
CO2 incubator (37 °C and 5% CO2).
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Statistical analyses
The data are expressed as average ± standard deviation
where the average is calculated from three independent
experiments conducted in triplicate (n = 3). For qRT-
PCR, ImageJ™, and FilaQuant data, Welch’s test was used
for pair-wise comparisons of cLIUS-stimulated and non-
cLIUS-stimulated control groups. For western blotting
data and RNA decay assay, one-way analysis of variance
(ANOVA) followed by post hoc Tukey’s test was
employed for pair-wise comparisons. Statistically signifi-
cant data (α = 0.5) was indicated by p values.

Results
cLIUS upregulates load-inducible genes
To establish the frequency dependence of MSCs under
cLIUS, the expression of load-inducible genes c-MYC
and c-JUN that are independent of new protein synthesis
[52], was evaluated using methods as detailed elsewhere
[37] and shown in Fig. 2a. The gene expression of c-
MYC and c-JUN were maximized at 5MHz. Thus, in the
current study, cLIUS at 5MHz was employed in all
experiments.
To first establish the chondroinductive potential of

cLIUS at 5MHz, the gene expression of the chondro-
genic marker SOX9 and osteogenic marker RUNX2 were
evaluated in MSCs and shown in Fig. 2b. Under cLIUS,
a sevenfold increase in the gene expression of SOX9 was
observed whereas the gene expression of RUNX2
remained unaffected when compared to non-cLIUS-
stimulated control. In a separate study, no significant dif-
ference in the expression of osteogenic markers (RUNX2,
COL1A1) and adipogenic markers (CEBPA, PPARγ) in
MSCs was observed following 10 days of cLIUS (5MHz)
stimulation whereas chondrogenic markers (SOX9 and
COL2A1) remained significantly elevated under cLIUS
stimulation when compared to non-cLIUS-stimulated
controls (Additional file 1: Figure S1).
The transcriptional activity of SOX9 is contingent

upon its subsequent nuclear translocation [53]. Thus, to
further corroborate the gene expression results, the
effect of cLIUS on the protein expression of SOX9 in
cultures of MSCs was evaluated by immunofluorescence
staining and is shown in Fig. 2c, d. The fluorescence in-
tensity of SOX9 stain was significantly elevated (p =
0.014) in cLIUS-stimulated MSCs when compared to
non-cLIUS-stimulated controls (Fig. 2d) and was highly
concentrated in the nuclear region (Fig. 2c). Our collect-
ive data show that cLIUS increases the expression of the
SOX9 gene and protein in MSCs.

cLIUS enhances the biosynthesis of SOX9 without
affecting SOX9 mRNA stability
To ascertain the impact of cLIUS on the biosynthesis of
SOX9 or its mRNA stability, RNA decay assay in the

presence of actinomycin D was performed in 2D cul-
tures of MSCs and shown in Fig. 2e, f. The degradation
profile of SOX9 mRNA under cLIUS and non-cLIUS-
stimulated control were similar (Fig. 2e), thus indicating
that cLIUS had no discernible effect on the stability of
SOX9 mRNA. In contrast, with respect to appropriate
controls, higher levels of SOX9 mRNA transcripts were
noted under cLIUS (Fig. 2f). The results demonstrated
that cLIUS promoted the biosynthesis of SOX9 mRNA
without affecting its stability.

Assessing the role of select signaling molecules in
regulating SOX9 under cLIUS
Studies have shown that key intracellular signaling mole-
cules ERK1/2 [54] and PKA [48] are involved in the
phosphorylation of SOX9. Upstream cell-surface effec-
tors of ERK1/2 and PKA such as integrin and ion chan-
nel TRPV4 are known to be activated by mechanical
stimuli [55–57]. Under cLIUS stimulation of MSCs, in-
creased intracellular calcium ion levels were observed as
measured by Fluo-4-AM assay as compared to non-
cLIUS-stimulated control (Additional file 2: Figure S2).
Therefore, the involvement of ion channel TRPV4 in the
transduction of cLIUS signals to SOX9 gene expression
was examined. To establish the specificity of cLIUS-
induced upregulation of the SOX9 gene, the gene ex-
pression and the nuclear localization of SOX9 under
cLIUS were examined by qRT-PCR and immunofluores-
cence staining respectively, in the absence and presence
of inhibitors of select signaling molecules in cultures of
MSCs depicted in Fig. 1 and shown in Figs. 3 and 4.

Inhibition of integrin or TRPV4 does not abrogate cLIUS-
induced SOX9 upregulation
In the absence of inhibitors, a sevenfold increase in the
gene expression of SOX9 was observed under cLIUS
stimulation (p = 0.017) when compared to non-cLIUS-
stimulated control (Fig. 2b). Upon inhibition of the cell-
surface receptor integrin by GRGDSP, the gene expression
of SOX9 was significantly reduced but not completely ab-
rogated when exposed to cLIUS (Fig. 3a). In the presence
of RN 1738, an inhibitor of TRPV4, the gene expression of
SOX9 was upregulated; however, no difference in the
expression levels was noted between cLIUS- and non-
cLIUS-stimulated MSCs (Fig. 3b). Additionally, in the
presence of inhibitors of integrin and TRPV4, no signifi-
cant difference in the fluorescence intensity of SOX9 was
noticed between cLIUS-stimulated and non-cLIUS-
stimulated controls (Fig. 3d, e, g, h).

Pharmacological inhibition shows that ERK-1/2 and not
PKA transduces cLIUS signal
Prevention of the phosphorylation of the intracellular
signaling molecule, ERK1/2, by the inhibition of its
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Fig. 2 (See legend on next page.)
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immediate upstream effector MEK1/2 by PD98059, ab-
rogated the gene expression of SOX9 (Fig. 3c). In the
presence of H-89, an inhibitor of PKA, the gene expres-
sion of SOX9 was upregulated in both cLIUS-stimulated
MSCs and non-cLIUS-stimulated controls; however, no
significant difference was observed between the groups
(Additional file 2: Figure S2). Under MEK/ERK1/2 inhib-
ition by PD98059, no nuclear localization of SOX9 was
observed upon immunofluorescence staining in cLIUS-
stimulated MSCs and non-cLIUS-stimulated controls
(Fig. 3f, i). This result correlates with the previous find-
ing that the gene expression of SOX9 was abrogated
upon MEK/ERK1/2 inhibition (Fig. 3c), thus confirming
that the cLIUS-induced SOX9 expression was dependent
on the phosphorylation of ERK1/2.

The actin cytoskeleton is reorganized under cLIUS
Actin reorganization has been connected to SOX9 up-
regulation [42, 45] where actin depolymerization corre-
lated with the elevated gene expression of SOX9 in cells
treated Y-27632, an actin-depolymerizing compound
[45]. Reorganization of actin in chondrocytes exposed to
a similar cLIUS regimen has been previously reported
[58]. Therefore, the actin cytoskeleton was examined in
cultures of MSCs under cLIUS and in the presence of Y-
27632 and shown in Fig. 4. Actin-phalloidin staining of
MSCs depicted intact actin stress fibers in non-cLIUS-
stimulated controls (Fig. 4c) while diffused or disrupted
actin fibers were observed in MSCs exposed to cLIUS
(Fig. 4g). Quantification of the number of actin fibers as
measured by FilaQuant software (Fig. 4n) revealed a sig-
nificant decrease (p = 0.002) in the number of actin fila-
ments per cell from 283.64 ± 190.75 in non-cLIUS-
stimulated controls to 52.00 ± 28.18 under cLIUS in
MSCs. Similarly, diffused actin fibers were observed in
Y-27632-treated MSCs (Fig. 4k) with a significant reduc-
tion in the actin filament number and length (Fig. 4n).
The cLIUS-induced changes in the actin cytoskeleton
were reversed within 24 h of withdrawal of cLIUS stimulus

(data not included). In MSCs treated with Y-27632, in-
creased expression of the SOX9 gene (Fig. 4m) and the
nuclear localization of the SOX9 protein (Fig. 4i, j) was
noted. Similar trends were observed in MSCs exposed to
cLIUS, which also exhibited actin disruption (Fig. 4j, e–h).

ERK1/2 is phosphorylated under cLIUS
Given the abolition of cLIUS-induced expression of
SOX9 by inhibition of MEK/ERK1/2, the phosphoryl-
ation of ERK1/2 under cLIUS was investigated. The pro-
tein expression of phosphorylated ERK1/2 (p-ERK) and
total ERK1/2 (t-ERK) under cLIUS in cultures of MSCs
was analyzed by western blotting and shown in Fig. 5a.
A twofold higher p-ERK/t-ERK ratio was noted under
cLIUS stimulation as compared to non-cLIUS-
stimulated control (Fig. 5b). Inhibition of MEK/ERK1/2
by PD98059 abrogated the phosphorylation of ERK1/2
in non-cLIUS-stimulated control as well as cLIUS-
stimulated MSCs.
In contrast, inhibition of integrin and TRPV4 by

GRGDSP and RN 1738, respectively, displayed increased
levels of p-ERK/t-ERK ratio in both non-cLIUS-stimulated
control and in cLIUS-stimulated MSCs. Thus, inhibition
of the cell-surface receptors, integrin, and TRPV4, did not
reduce the levels of p-ERK1/2, implying that other recep-
tors of mechanical stimuli may be activated leading to the
phosphorylation of ERK1/2 under cLIUS.
In MSCs treated with Y-27632 that promotes actin

disruption, elevated levels of p-ERK were noted. Similar
trends were observed in MSCs exposed to cLIUS which
exhibited actin disruption (Fig. 4g) in concert with an in-
creased p-ERK (Fig. 5a) and SOX9 expression (Fig. 4e, f, m).
Taken together, these results indicate a possible relation-
ship between p-ERK and increased SOX9 gene expression
under cLIUS stimulation in MSCs.

Chondrogenesis under cLIUS
To examine the ability of cLIUS to induce a chondro-
genic phenotype in MSCs in the absence of exogenously

(See figure on previous page.)
Fig. 2 Effect of cLIUS on select genes, SOX9 localization, and SOX9 mRNA stability. Gene expression of a c-MYC and c-JUN and b SOX9 and
RUNX2 in MSCs exposed to cLIUS at indicated frequencies were estimated by qRT-PCR (n = 3). MSCs plated at 1 × 105 cells/well were exposed
to cLIUS (14 kPa) at frequencies: 5 MHz (2.5 Vpp), 2 MHz (6 Vpp), or 8 MHz (9.5 Vpp) at constant pressure amplitude of 14 kPa one time for 5 min.
Non-cLIUS-stimulated MSCs served as controls (n = 3). Data are shown as the mean ± standard deviation (Welch’s t-test). c MSCs in coverslips
(n = 3) at an initial seeding density of 1 × 105 cells/well were stimulated with cLIUS application at 14 kPa (5 MHz, 2.5 Vpp) for 5 min and fixed in
4% PFA. Confocal micrographs (× 60 magnification) of immunofluorescent staining of SOX9 (green) shows the localization of SOX9 in the MSCs
under cLIUS (Scale bar = 20 μm). Nucleus was stained by Dapi (blue) and d quantified by ImageJ (n = 10–20). Data are shown as the mean ±
standard deviation. e MSCs (2 × 104 cells per well) were treated with 5 μg/ml actinomycin D, followed by stimulation with cLIUS at 14 kPa (5 MHz,
2.5 Vpp), for 15 min (n = 3). Total RNA was collected after 0 min, 30 min, 1 h, and 2 h of actinomycin D treatment, and the fold change in mRNA
transcripts of SOX9 were quantified by qRT-PCR. In a parallel experiment without actinomycin D treatment, total RNA was collected at indicated
time points following cLIUS stimulation, and the fold change in SOX9 mRNA transcripts was quantified by qRT-PCR (n = 3). Non-cLIUS-stimulated
samples served as controls at respective time points (n = 3). Data represent the average ± standard deviation of fold change in SOX9 mRNA levels
normalized to time point 0. f Graphical representation of the amount of SOX9 mRNA transcripts in actinomycin D-treated MSCs with or without
cLIUS stimulation normalized to non-actinomycin D-treated samples at respective time points
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added TGFβ, MSC-laden-HyStem-C hydrogel constructs
(3D) were cultured under cLIUS stimulation for 6 weeks
and shown in Fig. 6. Immunohistochemical staining of
HyStem-C hydrogel constructs displayed a higher depos-
ition of collagen II and chondroitin sulfate in cLIUS-
stimulated constructs as compared to non-cLIUS-
stimulated constructs.

Discussion
Chondrogenic differentiation of MSCs is predicated on
the transcriptional activity SOX9, which is initiated by

the direct binding of phosphorylated SOX9 to the target
genes such as collagen type II, IX, XI, aggrecan, link pro-
tein; consequently, inducing their transcription [59, 60].
Therefore, priming of MSCs toward a chondrogenic
lineage, by growth factors or mechanical stimuli, centers
on the upregulation of SOX9. Given the increased levels
of SOX9 protein and mRNA in MSCs under cLIUS
stimulation [24, 38], the aim of the present study was to
evaluate the underlying molecular events that regulate the
cLIUS-induced expression of SOX9. Our results indicated
that nuclear localization of the SOX9 protein,

Fig. 3 cLIUS-induced SOX9 regulation under integrin, TRPV4, and MEK/ERK1/2 inhibition. SOX9 gene expression in MSCs under a integrin inhibition by
GRGDSP, b TRPV4 inhibition by RN 1738 (n = 3), and c MEK/ERK1/2 inhibition by PD98059 is shown. Serum-starved 2D cultures of MSCs were treated
with inhibitors: 100 μg/ml GRGDSP (integrin inhibitor) or 30 μM RN1738 (TRPV4 inhibitor) for 4 h. Total RNA was collected 1 h after cLIUS stimulation at
14 kPa (5MHz, 2.5 Vpp) for 5min and the gene expression of SOX9 was quantified by qRT-PCR. Non-cLIUS-stimulated MSCs incubated in DMSO served
as vehicle controls (n = 3). Data represented as a mean ± standard deviation. d–f MSCs were grown in coverslips (n = 4–6 per treatment condition) at
an initial seeding density of 1 × 105 cells/well and were treated with inhibitors followed by the cLIUS application at 14 kPa (5MHz, 2.5 Vpp) for 5 min
and fixed in 4% PFA. Confocal micrographs (× 60 magnification) of immunofluorescent staining of SOX9 (green) shows the localization of SOX9 in the
MSCs under d integrin inhibition by GRGDSP, e TRPV4 inhibition by RN1738, and f MEK/ERK1/2 inhibition by PD98059. The nucleus was stained with
Dapi (blue). Scale bar represents 20 μm. g–i Quantification of SOX9 immunofluorescence intensity in control and cLIUS samples in the presence or
absence of inhibitors by ImageJ (n = 10–20). Data are shown as the mean ± standard deviation of samples in triplicate. The p value represents the
statistical significance, and n.s represents the non-significant difference as analyzed by Welch’s t-test
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phosphorylated ERK1/2, and disrupted actin filaments
were differentially regulated under cLIUS and play a role in
transducing cLIUS signals to induce SOX9 expression in
MSCs.
The nuclear import of the transcription factor is related

to its subsequent transcriptional activity [61]. For SOX9 to
be transcriptionally active, nuclear localization of SOX9 is
vital for its target DNA binding [61–63]. Indeed, the most
prominent inducer of chondrogenesis, TGFβ, operates by
essentially increasing the transcriptional activity of the
SOX9 protein through its stabilization and binding to the
COL2A1 gene via canonical or non-canonical pathways
[43, 64]. In the present study, enhanced nuclear accumula-
tion of SOX9 under cLIUS in MSCs (Fig. 2c) was indica-
tive of its increased transcriptional activity as evidenced by
elevated COL2A1 and SOX9 gene expression in MSCs
(Additional file 1: Figure S1).

Mechanical stimuli including cLIUS have been previ-
ously documented to increase p-ERK1/2 and SOX9
[11, 65, 66] in both chondrocytes and MSCs [54]. How-
ever, a relationship between elevated levels of p-ERK and
the gene expression of SOX9 was not established. Our re-
sults demonstrate that under cLIUS, SOX9 upregulation
in MSCs was dependent on the phosphorylation of ERK1/
2 and the specificity was established using MEK/ERK1/2
inhibitor. Similar results were observed in FGF-2 treated
immortalized ADTC5 cell lines [67]. The exact molecular
mechanism of p-ERK1/2 directed regulation of SOX9 ex-
pression remains to be investigated.
In the present study, cLIUS was shown to disrupt actin

filaments in MSCs and a correlation between the per-
turbed actin cytoskeleton and SOX9 upregulation under
cLIUS was inferred. Interestingly, reorganization of the
actin cytoskeleton was noted as a precondition to

Fig. 4 Effect of actin disruption on SOX9 upregulation. a–l Immunofluorescence staining of SOX9 (green) and F-actin filaments (red) in cLIUS-
stimulated (5 MHz, 2.5 Vpp, 5 min, 1×) and Y-27632-treated MSCs grown on coverslips (n = 3) at an initial seeding density of 1 × 104 cells/well
(n = 3). Non-cLIUS-stimulated MSCs served as control (n = 3). Confocal micrographs were imaged at × 60 magnification. Scale bar represents
20 μm. m The gene expression of SOX9 was evaluated by qRT-PCR in MSCs treated with Y-27632 or stimulated with cLIUS at 14 kPa (5 MHz, 2.5
Vpp) for 5 min (n = 3). Non-cLIUS-stimulated MSCs without Y-27632 treatment served as controls (n = 3). Data are shown as the mean ± standard
deviation. Statistical significance was tested by Welch’s test. n Quantification of the actin filament number and length in non-cLIUS-stimulated
control, cLIUS-, and Y-27632-treated cells (n = 10) by FilaQuant software
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differentiation [68]. Previous work alludes to the role of
actin disrupted by the cytoskeletal drug, Y-27632, in indu-
cing chondrogenesis in limb mesenchymal cultures by ele-
vating the gene expression of SOX9 [44, 45]. In our study,
cLIUS-induced disruption of the actin filaments was con-
comitant with increased SOX9 gene expression in MSCs
(Fig. 4). To establish specificity, actin stabilizer jasplakino-
lide was added; however, the results were inconclusive. In
our study, the gene expression of SOX9 was dependent on
ERK1/2 phosphorylation. We postulate that increases in
SOX9 observed under cLIUS or Y-27632 as a result of
actin disruption was influenced by the increased levels of
p-ERK (Fig. 5). The treatment of non-stimulated MSCs by
the MEK/ERK1/2 inhibitor, which prevented the

phosphorylation of ERK1/2, disrupted actin but did not
result in the upregulation of SOX9 as expected (Fig. 3,
Additional file 3: Figure S3). Thus, our present study indi-
cated that the phosphorylation of ERK1/2 was the key mo-
lecular event impacting the expression of SOX9.
As the phosphorylation of ERK1/2 was pivotal in the up-

regulation of SOX9 under cLIUS, the role of upstream ef-
fectors of ERK1/2 was evaluated to understand the
pathways through which cLIUS signals were transduced
to ERK1/2, ultimately leading to the gene expression of
SOX9 in MSCs. The involvement of the integrin-mediated
MAPK pathway in transducing cLIUS signals to ERK1/2
in chondrocytes has been reported [65, 69]. In another
study, pLIUS was shown to immediately elevate levels of

Fig. 5 Phosphorylation of ERK1/2 under cLIUS. a Western blots depicting protein expression of phosphorylated ERK1/2 (p-ERK) and total ERK1/2
(t-ERK). 2D cultures of MSCs were grown in the presence or absence of inhibitors of MEK/ERK1/2 (PD98059), integrin (GRGDSP), or TRPV4 (RN1734)
separately (n = 3), followed by exposure to cLIUS at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. MSCs were lysed, total protein was extracted, and western
blots were developed after SDS-PAGE. Non-cLIUS-stimulated MSCs served as respective controls (n = 3). b Quantification of bands observed in
western blot by ImageJ (n = 3). Data are shown as the mean ± standard deviation of samples in triplicate. The p value represents a statistical
significance and n.s. represents the non-significant difference (Welch’s test). Western blots were cropped for clarity and to exclude redundant
adjacent lanes. Uncropped western blots are provided in supplementary files
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p-ERK1/2 [27] through the activation of TRPV4-mediated
calcium signaling pathway in chondrocytes. In the current
study, individual blockage of either integrin or TRPV4
failed to abrogate p-ERK1/2 under cLIUS stimulation in
MSCs, and hence, SOX9 remained elevated. Thus, other
sensors of mechanical signals that also regulate the phos-
phorylation of ERK1/2 could play a role in the ERK1/2-
mediated SOX9 upregulation under cLIUS in MSCs.
The main purpose of the study was to evaluate the

chondroinductive ability of cLIUS by monitoring the
gene and protein expression of SOX9, transcription
factor that controls the expression of collagen II
(COL2A1). Thus, the focus was on the molecular con-
sequences following cLIUS, which are best evaluated
upon a single exposure to LIUS. To offer proof of the
relevance of these molecular events to chondrogene-
sis, MSC constructs were cultured in Hystem-C™
hydrogels under cLIUS (note no exogenous growth
factors were added) for 6 weeks (Fig. 6). Increased de-
position of collagen II and chondroitin sulfate at the
end of the culture period demonstrated MSC chon-
drogenesis upon extended exposure to cLIUS. Previ-
ously, the long-term 3D culture of MSCs in scaffolds
under cLIUS stimulation, notably in the absence of
TGFβ, also yielded an elevated expression of collagen
II and SOX9 protein [38]. Further, the biochemical,
as well as mechanical properties (compressive
strength and aggregate modulus), were significantly

higher in MSC-laden scaffold constructs exposed to
cLIUS stimulation for 8 weeks as opposed to non-
cLIUS-stimulated controls [38]. Collectively, our re-
sults demonstrated the chondroinductive ability of
cLIUS in 3D cultures of MSCs in the absence of
TGFβ.

Conclusions
In summary, our study identified the phosphorylation of
ERK1/2, increased nuclear localization of the SOX9 pro-
tein, and disrupted actin as the events mediating in-
creased SOX9 gene expression under cLIUS. Most
notably, cLIUS-induced upregulation of SOX9 was
dependent on the phosphorylation of ERK1/2, signifying
the involvement of ERK1/2 signaling on the SOX9 gene
and protein expression. The involvement of endogen-
ously secreted TGFβs in MSCs in response to cLIUS was
excluded, as the current study focused on the immediate
molecular events following one dose of cLIUS stimula-
tion. However, the role of intrinsic TGFβ signaling in
concert with cLIUS in MSCs will be investigated in fu-
ture studies. The role of additional physical perturba-
tions such as nuclear deformation and chromatin
reorganization on MSCs in response to cLIUS will also
be undertaken in future investigations. Additionally, the
results presented in the current study remain to be veri-
fied in 3D cultures and in cartilage explants.

Fig. 6 The culture of MSC-laden HyStem-C constructs under cLIUS stimulation. MSCs were encapsulated at a density of 5 × 106 cells/ml of HyStem-C
hydrogel and grown in DMEM medium supplemented with 10% FBS, 100 nM dexamethasone, and 50 μg/ml L-ascorbic acid for 6 weeks under cLIUS
at 14 kPa (5MHz, 2.5 Vpp), 20min/application, and 4 applications/day (n = 3). Non-cLIUS-stimulated 3D constructs served as controls (n = 3).
Representative images of 4-μm sections of the constructs stained immunohistochemically for collagen II and chondroitin sulfate is shown. Scale bar
represents 100 μm
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s13287-019-1532-2.

Additional file 1: Figure S1. Gene expression of select osteogenic,
chondrogenic and adipogenic markers under cLIUS. MSCs were grown at
an initial seeding density of 2 x 105 cells/ml in 12-well TCP. MSCs were
exposed to cLIUS at 14 kPa (5.0 MHz, 2.5 Vpp), 5 min/application, 4X/day
for a period of 10. MSCs (n=3) were treated with Trizol and total RNA was
extracted using RNeasy Mini Kit (Qiagen, USA) as per manufacturer’s
protocol. Non-cLIUS-stimulated MSCs served as control (n=3). qRT-PCR
was carried out in Realplex™ real-time PCR system (Eppendorf, USA) using
TaqMan® RNA-to-CT™ 1-Step Kit (Life Technologies, USA) as per manufacturer’s
guidelines. The gene expression of select osteogenic (Runx2, SPP-1, and
COL1A1), chondrogenic (SOX9 and COL2A1) and adipogenic (CEBPA and
PPARγ) was evaluated. Data represent mean ± standard deviation. *p-value <
0.05 & compared with control.

Additional file 2: Figure S2. Intracellular Ca++ influx under cLIUS and
SOX9 gene expression under PKA inhibition: a MSCs were plated at an
initial seeding density of 2 X 105 cells/well on 12-well TCP. MSCs were
pre-treated with the Fluo-4-AM probe (3 μM) in a recording medium (20
mM HEPES, 115 mM NaCl, 5.4 mM KCl, 0.8 mM MgCl2, 1.8 mM CaCl2,
13.8mM glucose) for 20 minutes, after which the medium was replaced
with recording medium without Fluo-4-AM. Intracellular calcium was
visualized 5 minutes after cLIUS stimulation (5 MHz. 2.5 Vpp, 5 minutes)
under a fluorescence microscope at 5X magnification(n=3). Non-cLIUS-
stimulated MSCs served as controls (n=3). Phase-contrast images (5X
magnification) depict the general morphology of the stained cells. b The
gene expression of SOX9 in non-cLIUS-stimulated and cLIUS-stimulated
MSCs in the presence of H-89, an inhibitor of PKA (20μg/ml). Total RNA
was collected 1 hour after cLIUS treatment in MSCs treated with H-89
and subjected to qRT-PCR. Non-cLIUS stimulated MSCs served as control.
Data represented as a mean ± standard deviation and normalized to
vehicle control.

Additional file 3: Figure S3. Figure. Actin staining in MSCs under ERK1/
2 inhibition. MSCs were treated with MEK/ERK1/2 inhibitor PD98059 for
4 h and fixed in 4% paraformaldehyde. Immunofluorescence staining
for F-actin (red) by phalloidin-Alexa Fluor 594 was carried out and
the representative confocal image is presented (n = 3). Scale bar
represents 20 μm.
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