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Abstract 

Tissue engineering strategies for cartilage defect repair require technology for local 

targeted delivery of chondrogenic and anti-inflammatory factors. The objective of this study was 

to determine the release kinetics of transforming growth factor β1 (TGF-β1) from self-

assembling peptide hydrogels, a candidate scaffold for cell transplant therapies, and stimulate 

chondrogenesis of encapsulated young equine bone marrow stromal cells (BMSCs). Although 

both peptide and agarose hydrogels retained TGF-β1, 5-fold higher retention was found in 

peptide. Excess unlabeled TGF-β1 minimally displaced retained radiolabeled TGF-β1, 

demonstrating biologically relevant loading capacity for peptide hydrogels. The initial release 

from acellular peptide hydrogels was nearly 3-fold lower than agarose hydrogels, at 18% of 

loaded TGF-β1 through 3 days as compared to 48% for agarose. At day 21, cumulative release of 

TGF-β1 was 32-44% from acellular peptide hydrogels, but was 62% from peptide hydrogels with 

encapsulated BMSCs, likely due to cell-mediated TGF-β1 degradation and release of small 

labeled species. TGF-β1 loaded peptide hydrogels stimulated chondrogenesis of young equine 

BMSCs, a relevant preclinical model for treating injuries in young human cohorts. Self-

assembling peptide hydrogels can be used to deliver chondrogenic factors to encapsulated cells 

making them a promising technology for in vivo, cell-based regenerative medicine. 

 

Keywords: Tissue Engineering; Sustained Delivery; Bone Marrow Stromal Cell; Regenerative 

Medicine; Cartilage Repair 
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Introduction 

Insufficient endogenous repair and regeneration of articular cartilage defects results in a 

compromised tissue incapable of performing its physiologic load bearing function and ultimately 

leads to the painful pathology, osteoarthritis. The limited healing capacity of articular cartilage 

has motivated the development of numerous tissue-engineering approaches which combine a 

chondrogenic cell source with a biocompatible scaffold and differentiation and tissue production 

factors. Despite recent promising results utilizing bone marrow derived stromal cells (BMSCs)1, 

no treatment has succeeded in producing hyaline differentiated tissue that fully integrates with 

the surrounding native cartilage and does not produce inflammation, senescence, apoptosis, or 

necrosis2. To develop a therapy that overcomes these challenges, local delivery of chondrogenic 

factors will likely be of key importance2. 

Transforming growth factor β1 (TGF-β1) has been extensively used to promote 

chondrogenesis in cartilage tissue engineering applications3-6. However, these in vitro studies 

predominantly delivered TGF-β1 via supplemented medium. To translate these results for use in 

vivo, TGF-β1 has been formulated for sustained release by exploiting its affinity for a variety of 

materials including heparin7,8, gelatin9,10, fibrin11,12 and modified dextran13. While these 

hydrogels were able to deliver TGF-β1 to encapsulated cells, a scaffold with nanoscale 

dimensions and simple gelation may produce an improved chondrogenic microenvironment and 

increase clinician ease of use. 

Self-assembling peptide hydrogels14-16 are a unique class of peptides that form three-

dimensional scaffolds at physiologic pH and ionic strength17. The resulting tissue engineering 

matrix contains nanofibers with the same length scale as native extracellular matrix,18 is 

biocompatible for in vivo use19,20, and has low immunogenic and pathogenic risk21. In addition, 
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these self-assembling peptides have the capacity to deliver small molecules22, functional 

proteins20,23,24, therapeutic macromolecules15, and bioactive motifs14. 

The objective of this study was to determine the release kinetics of TGF-β1 from self-

assembling peptide hydrogels and use them to stimulate chondrogenesis of encapsulated young 

equine BMSCs, a clinically relevant cell source for injury repair in young human cohorts. 

Release of TGF-β1 from agarose hydrogels was characterized as a benchmark comparison for 

release from self-assembling peptide hydrogels. Agarose was chosen because, as a commonly 

used hydrogel for electrophoresis and chromatography of large biomolecules, it is uncharged and 

induces minimal protein adsorption and precipitation25. In addition, it has been used extensively 

to study the synthesis and accumulation of extracellular matrix synthesized by encapsulated 

BMSCs. 

 

Materials and Methods 

Materials 

Self-assembling peptide with the sequence AcN-(KLDL)3-CNH2, subsequently (KLDL)3 

or simply peptide, was synthesized by the MIT Biopolymers Laboratory (Cambridge, MA) using 

an ABI Model 433A peptide synthesizer with FMOC protection. All other materials were 

purchased from the suppliers noted below. 

 

TGF-β1 Uptake with Acellular Hydrogels 

Acellular 0.35% (w/v) peptide solutions were cast using acellular agarose molds to 

initiate self-assembly, generating 50 µL initial volume, 6.35 mm diameter by 1.6 mm thick disks 

(one disk per well in 24-well plates) as described previously26.  An identical geometric 
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configuration was used to cast disks of 2% low melting point agarose (Invitrogen, Carlsbad, CA). 

125I-TGF-β1 (55pM, 1.4 ng/mL, 3500 Ci/mmol, PerkinElmer, Waltham, MA) was either added 

to hydrogel solutions prior to gelation (encapsulated within hydrogels), or added to the 

equilibration bath. Where indicated, unlabeled TGF-β1 (10-100 ng/mL, R&D Systems, 

Minneapolis, MN) was mixed simultaneously with 125I-TGF-β1. Hydrogels were incubated at 

37ºC with agitation in a bath consisting of high glucose DMEM (Invitrogen) with 1% ITS+1 

(Sigma-Aldrich, St. Louis, MO), PSA (100 U/mL penicillin, 100 µg/mL streptomycin, and 250 

ng/mL amphotericin), 10mM HEPES, L-proline, sodium pyruvate, and non-essential amino acids 

(equilibration bath). The equilibration bath was not changed for 5 days, after which it was 

collected and stored at -20˚C. Hydrogel samples were rinsed 3x in PBS (30 sec/rinse) to remove 

surface-bound 125I-TGF-β1 and then mechanically disrupted (acellular peptide) or melted 

(acellular agarose) to measure retained 125I-TGF-β1. The 125I-radioactivity of all equilibration 

bath and hydrogel samples were quantified individually using a gamma counter (model B5002, 

Packard Instrument Company, Meriden, CT). The uptake ratio was calculated as the 

concentration of the 125I-TGF-β1 in the hydrogel samples (per intra-gel wet weight) normalized 

to the concentration of 125I-TGF-β1 in the equilibration bath. Radio-labeled and unlabeled TGF-

β1 were assumed to partition into the hydrogels in an identical manner27. To account for the 

presence of small labeled species accumulated during the time course of experimentation, 

Sephadex G25 chromatography of the equilibration bath (see below) was performed at day 5 and 

the fraction of small molecule 125I species was determined28. The uptake ratio of free 125I was 

also measured separately to correct for the presence of such free label. 

 

Tissue Harvest 
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Equine bone marrow was harvested from the sternum and iliac crest of immature mixed-

breed horses (2-4-month-old foals) as described previously29. Horses were euthanized at 

Colorado State for reasons unrelated to conditions that would affect marrow. Bovine bone 

marrow was harvested from newborn bovine calves (Research 87, Marlborough, MA) as 

described previously26. 

 

Cell Isolation 

BMSCs were isolated from equine29 and bovine26 marrow via differential adhesion to 

separate BMSCs from the total nucleated cell population5. After reaching local confluence, 

BMSCs were cryopreserved and stored for future use. Prior to peptide hydrogel encapsulation, 

BMSCs were expanded by plating at 6x103 cells/cm2 and culturing for three days in low glucose 

DMEM (Invitrogen), 10% ES-FBS (Invitrogen), 10mM HEPES and PSA plus 5 ng/mL bFGF 

(R&D Systems, Minneapolis, MN). After 3 days, cells were detached with 0.05% trypsin/1mM 

EDTA (Invitrogen) at ~3x104 cells/cm2 (passage 1) and replated at 6x103 cells/cm2. Passage 2 

cells were used for 3D peptide hydrogel culture. 

 

TGF-β1 Release from Acellular and BMSC-seeded Hydrogels  

125I-TGF-β1 was mixed with all hydrogel solutions prior to gelation. Acellular hydrogels 

were incubated in equilibration bath with the same composition as was used for uptake ratio 

measurements. Where indicated, 100 ng/mL unlabeled TGF-β1 was also mixed with hydrogels 

prior to gelation. BMSC-seeded hydrogels were cultured in chondrogenic medium which 

consisted of the equilibration bath formulation plus the following supplements: 0.1 µM 

dexamethasone (Sigma-Aldrich) and 37.5 µg/mL ascorbate-2-phosphate (Wako Chemicals, 
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Richmond, VA). Chondrogenic medium or equilibration bath was changed every 2-3 days and 

conditioned samples were frozen at -20C. At days 7, 14, or 21, acellular hydrogels samples were 

collected as described above. For BMSC-seeded peptide hydrogels, samples were digested with 

proteinase-K (Roche) to remove secreted ECM proteins and release 125I-label. 

 

125
I-TGF-β1 Chromatography 

Immediately before use for all experiments, 125I-TGF-β1 was purified by Sephadex G25 

chromatography to remove small 125I species that may result from time-dependent degradation of 

the label or incomplete purification as received from the supplier28. Sephadex G25 

chromatography was performed with a 0.7 × 50 cm gravity fed column equilibrated in 1 M acetic 

acid supplemented with 0.1% BSA and 0.1% Triton X-100. Purified 125I-TGF-β1 was collected 

in the void volume. This 125I-TGF-β1 stock was added to equilibration bath (final concentration 

1.4 ng/mL) and as a control an aliquot was incubated at 37°C for 7, 14, or 21 days and 

characterized by Sephadex G25 chromatography. For release experiments from either acellular 

or BMSC-seeded hydrogels, 125I-containing species in the equilibration bath were characterized 

by Sephadex G25 chromatography at days 7, 14, and 21. 125I-species retained within acellular 

hydrogels during release experiments were recovered by mechanical disruption of the gel and 

characterized by G25 chromatography. The void volume (Kav=0) and total volume (Kav=1) were 

calculated from the peaks for 125I-TGF and free 125I label released to the equilibration bath from 

acellular peptide at day 7 (Fig. 4B). Macromolecular species were defined as -0.3<Kav<0.3 and 

small molecule species were defined as Kav>0.8. 

 

BMSC Chondrogenesis via Controlled TGF-ββββ1 Delivery 
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BMSCs were encapsulated in (KLDL)3 peptide hydrogels (0.35% w/v) at 107 cells/mL 

and cultured in chondrogenic medium with (Med-TGF) or without (TGF-free) 10 ng/mL 

unlabeled recombinant human TGF-β1 as positive and negative controls for chondrogenesis, 

respectively. In separate hydrogels, BMSCs were encapsulated in TGF-β1 adsorbed peptide 

hydrogels defined as 0.35% (KLDL)3 solution mixed with either 10 or 100 ng/mL unlabeled 

TGF-β1 prior to gelation (Ads-TGF-10 or Ads-TGF-100, respectively). Ads-TGF-10 and Ads-

TGF-100 hydrogels were cultured in TGF-β1-free medium. 750 µL of medium was added per 

hydrogel and medium was changed every 2-3 days for up to 21 days of culture. The total dose of 

TGF-β1 in the Med-TGF condition with 9 medium changes over 21 days was thus 67.5 ng as 

compared to 5 ng of TGF-β1 in the highest adsorbed TGF-β1 condition (Ads-TGF-100) i.e. 100 

ng/mL in a 50 µL hydrogel. 

 

DNA and ECM Biochemistry 

During the last 24 hours of culture, medium was additionally supplemented with 5 

µCi/mL of 35S-sulfate and 10 µCi/mL of 3H-proline to measure cellular biosynthesis of 

proteoglycans and proteins, respectively. Upon termination of culture, peptide hydrogels were 

rinsed 4x30 minutes in excess unlabeled sulfate and proline, weighed wet, lyophilized, weighed 

dry, and digested in 250 µg/mL proteinase-K (Roche Applied Science, Indianapolis, IN) 

overnight at 60ºC. Digested samples were assayed for total DNA content by Hoechst dye 

binding30, retained sulfated glycosaminoglycan (sGAG) content by DMMB dye binding assay31, 

and radiolabel incorporation with a liquid scintillation counter. Conditioned culture medium 

collected throughout the study was also analyzed for sGAG content by DMMB dye binding. 
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Percent sGAG retained is defined as: (hydrogel sGAG content) / (hydrogel sGAG content + 

cumulative sGAG in conditioned medium). 

 

Statistical analysis 

All data are presented as mean ± SEM. Data were analyzed with a mixed model of 

variance with animal donor as a random factor using SYSTAT version 12. Residual plots for 

dependent variable data were constructed to test for normal distribution. If this assumption was 

not met, data were log transformed to ensure normality. Pairwise comparisons were made by 

post hoc Tukey tests with significance threshold set at p<0.05. 

 

Results 

TGF-β1 Uptake by Acellular Peptide and Agarose Hydrogels 

To investigate delivery of TGF-β1 by peptide and agarose hydrogels, 125I-TGF-β1 was 

added either to the equilibration bath (Fig. 1A) or to the hydrogel solution prior to gelation (Fig. 

1B). Hydrogels were incubated with agitation at 37°C for 5 days without equilibration bath 

changes. The uptake ratio of 125I-TGF-β1 (ratio of 125I-TGF-β1 concentration in the gel to 

concentration in the equilibration bath) of equilibration bath loaded 125I-TGF-β1 was 6-fold 

higher for peptide than for agarose hydrogels (18.5 ± 1.26 vs. 3.1 ± 0.17, respectively, Fig. 1A, 

p<0.001) and greater than the uptake of free 125I label (1.3 ± 0.06 and 0.6 ± 0.03, in each 

hydrogel respectively, Fig. 1A, p<0.001). When 125I-TGF-β1 was added to the hydrogel solution 

prior gelation, the uptake ratio was ~5-fold higher for both peptide and agarose hydrogels (85.8 ± 

1.1 and 17.1 ± 0.4, respectively, Fig. 1B, p<0.001).  
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To investigate whether 125I-TGF-β1 uptake by peptide and agarose hydrogels could be 

blocked by the addition of excess unlabeled TGF-β1, up to 100 ng/mL of unlabeled TGF-β1 was 

added simultaneously with 1.4 ng/mL of 125I-TGF-β1 to peptide and agarose hydrogels prior to 

gelation. When 100 ng/mL of unlabeled TGF-β1 was added, the uptake ratio decreased by just 

16% for peptide and 27% for agarose (Fig. 1B, p<0.001). For both peptide and agarose acellular 

hydrogels the wet weights ranged from 48.1±1.6 - 50.4±0.7 µg (mean ± sem) consistent with the 

nominal 50 µL gel volume and a density of 1 g/mL. 

 

Release of TGF-β1 from Acellular Peptide and Agarose Hydrogels 

125I-labeled TGF-β1 was mixed with peptide or agarose prior to gelation without cells and 

the resulting hydrogels were maintained in TGF-β1-free equilibration bath. Independent 

experiments showed that the uptake ratio of 125I-TGF-β1 did not change after 2 days of agitation 

at 37˚C, indicating that 2 days was sufficient for the system to reach transport equilibrium (data 

not shown). Thus for release experiments, equilibration bath changes were conducted every 2-3 

days for 21 days. Collected equilibration bath samples were analyzed for 125I-TGF-β1 content 

(Fig. 2A). By day 3, 18% of the total 125I-TGF-β1 loaded was released from peptide hydrogels, 

while 48% was released from agarose hydrogels. By the end of 21 days, TGF-β1 release had 

increased to 44% for peptide and 82% for agarose (Fig. 2B, p<0.001). At day 21, hydrogels were 

melted at 70°C and mechanically disrupted to measure retained 125I-TGF-β1.  Peptide hydrogels 

retained 56% of the total 125I-TGF-β1 loaded versus 18% for agarose (Fig. 2B, p<0.001).  

 

BMSC-Encapsulation within Peptide Hydrogels Increases TGF-β1 Release 
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Encapsulating BMSCs within peptide hydrogels altered the release profile of TGF-β1, 

consistently increasing the TGF-β1 release by approximately a factor of two throughout the 21-

day timecourse. At day 3, 13%-16% 125I-TGF-β1 release had occurred in acellular peptide 

hydrogels compared to 26%-28% in BMSC-seeded hydrogels (Fig. 3A). By days 7, 14, and 21, 

TGF-β1 release had increased to 25%, 27%, and 32% for acellular hydrogels compared to 48%, 

59%, and 62% for BMSC-seeded hydrogels, respectively (p<0.001 for acellular vs. BMSC at 

each timepoint, Fig. 3C). Furthermore, replotting as TGF-β1 release per day (Fig. 3B) suggests 

BMSC-seeded hydrogels had an accentuated initial release compared to acellular hydrogels from 

days 0-8. However from days 11-21, TGF-β1 release per day from BMSC-seeded hydrogels was 

comparable to acellular hydrogels (Fig. 3B). The retained TGF-β1 content within peptide 

hydrogels was consistent with the release profiles with 46% more TGF-β1 retained within 

acellular peptide than the BMSC-seeded peptide at day 7 and 76% more at days 14 and 21 (Fig. 

3C).  

While the acellular peptide hydrogel release experiments in Fig. 2 contained no unlabeled 

TGF-β1, the acellular peptide hydrogels for Fig. 3 were loaded with 100 ng/mL of unlabeled 

TGF-β1 in addition to 1.4 ng/mL of 125I-TGF-β1. The addition of unlabeled TGF-β1 resulted in 

comparable retention and release of 125I-TGF-β1 from acellular peptide with 68% retained and 

32% released at day 21 (Fig. 3C) as compared to 56% retained and 44% released without 

unlabeled TGF-β1 (Fig. 2B). This is consistent with Fig. 1B where the addition of excess 

unlabeled TGF-β1 had a limited effect on the uptake of 125I-TGF-β1. 

 

Peptide Hydrogels Retained Macromolecular
 125

I-Labeled Species 
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Prior to release and uptake experiments, 125I-TGF-β1 was purified by Sephadex G25 size-

exclusion chromatography to remove small labeled species. As a control, this purified 

macromolecular 125I-TGF-β1 stock solution was incubated for 7, 14, or 21 days at 37°C in 

equilibration bath. This incubation resulted in the limited passive generation of small labeled 

species (Fig. 4A). Size-exclusion chromatography showed a slight decrease in the size of the 

macromolecular peak (Kav~0) with 91%, 87%, and 84% of the total CPMs accounted for at each 

timepoint, respectively. The small species peak (Kav~1) increased correspondingly with 8%, 12%, 

and 14% of the total CPMs at days 7, 14, and 21, respectively. 

Next, 125I-TGF-β1 was mixed with acellular peptide hydrogels prior to gelation and both 

bath and hydrogel samples were collected at days 7, 14, and 21. The 125I macromolecular and 

small-species peaks released to the equilibration bath from these acellular peptide hydrogels 

were nearly equivalent at day 7, with 49% macromolecular compared to 36% small species (Fig. 

4B). The percentage of small species in the bath increased with time, and at day 21 only 10% of 

the 125I-species in the equilibration bath were macromolecular and 85% were small molecules. In 

contrast, the 125I-species retained within the acellular peptide hydrogels was 96% 

macromolecular at day 7 and 80% macromolecular at day 21 (Fig. 4C), whereas the small-

labeled species present within the acellular peptide were 2% and 11% at days 7 and 21, 

respectively.  

When 125I-TGF-β1 was mixed with BMSC-seeded peptide hydrogels, the relative 

abundance of small-labeled species in the medium at day 7 was higher than for acellular 

hydrogels (Figs. 4D vs. 4B). At day 7, macromolecular species accounted for only 23% of CPMs 

while small molecules accounted for 54% (compared to 49% and 36% for acellular, respectively, 

see above). By day 21, BMSC-seeded and acellular hydrogels showed comparable abundance of 
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labeled species, with 6% macromolecular and 68% small molecule for BMSC-seeded hydrogels 

(compared to 10% and 85% for acellular, respectively, see above). 

 

Peptide Hydrogels Deliver Chondrogenic Levels of TGF-β1 to Encapsulated BMSCs 

To determine whether peptide adsorbed TGF-β1 could stimulate chondrogenesis of 

encapsulated bovine BMSCs, (KLDL)3-peptide solution was mixed with either 10 ng/mL (Ads-

TGF-10) or 100 ng/mL (Ads-TGF-100) unlabeled TGF-β1 immediately prior to cell 

encapsulation. DNA content was ~50% higher in Ads-TGF-100 peptide hydrogels than in either 

TGF-β1-free controls or medium-delivered TGF-β1 hydrogels at day 14 (p<0.01, Fig. 5A), while 

Ads-TGF-10 was not different from either group. sGAG content was equivalent for Ads-TGF-

100 and medium-delivered TGF-β1 at day 7 and both were ~4-fold higher than TGF-β1-free 

controls (p<0.001, Fig. 5B). In contrast, Ads-TGF-10 did not stimulate sGAG accumulation 

compared to TGF-β1-free controls. By day 14, sGAG content for Ads-TGF-100 peptide 

hydrogels was 5-fold higher than TGF-β1-free controls (Fig. 6B, p<0.001) and nearly 2-fold 

higher than medium-delivered TGF-β1 (p<0.05). 

 

TGF-β1 Adsorbed Peptide Hydrogels Stimulate Chondrogenesis of Equine BMSCs 

Foal equine BMSCs were encapsulated within TGF-β1 adsorbed peptide hydrogels to test 

whether this delivery technology could stimulate chondrogenesis in a species used as a 

translational in vivo model of cartilage repair 32,33. Since Ads-TGF-100 was successful in the 

bovine pilot study, this concentration was chosen for the equine studies. Hydrogels were 

analyzed at days 7, 14, and 21. When foal equine BMSCs were encapsulated in Ads-TGF-100 

peptide hydrogels and cultured in TGF-β1-free medium, DNA content was 50% higher than in 
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TGF-β1-free controls by day 7 (Fig. 6A, p<0.001) and was statistically equivalent to hydrogels 

with TGF-β1 supplemented medium. No further increase in DNA content after day 7 was seen 

for Ads-TGF-100 stimulated BMSCs resulting in 60% lower DNA content than for medium-

delivered TGF-β1 at day 21 (p<0.001). Ads-TGF-100 BMSCs accumulated comparable sGAG to 

medium-delivered TGF-β1 throughout the entire 21 day culture period (Fig. 6B) with a final 

sGAG content that was 25-fold higher than TGF-β1-free controls (p<0.001). Consistent with 

sGAG content, proteoglycan biosynthesis with adsorbed TGF-β1 stimulation was either higher 

or equivalent to hydrogels cultured in TGF-β1 supplemented medium through 21 days (Fig. 6C) 

and was 4-fold higher than the TGF-β1-free control at day 21 (p<0.001). In addition, the sGAG 

retained within the hydrogel as a percentage of the total produced (i.e. both sGAG retained as 

well as lost to the conditioned medium) was 65% and 60% for adsorbed and medium-delivered 

TGF-β1, respectively, at day 7 (difference was not significant), and remained constant over 21 

days in culture (Fig. 6D). 

The solid matrix as a percentage of the total wet mass for BMSC-seeded hydrogels with 

Ads-TGF-100 was equivalent to hydrogels in TGF-β1 supplemented medium at days 7 and 14 

(Fig. 6E), while by day 21 Ads-TGF-100 BMSCs had produced 25% less solid matrix than 

hydrogels with medium-delivered TGF-β1 (p<0.05). However, Ads-TGF-100 BMSCs still had 

more than 2-fold higher percentage solid than TGF-β1-free controls (p<0.001). The protein 

biosynthesis rate for Ads-TGF-100 BMSCs was equivalent to medium-delivered TGF-β1 at day 

7 (Fig. 6F), but dropped to 50% of medium-delivered TGF-β1 at days 14 and 21 (p<0.001). Ads-

TGF-100 BMSCs had more than 2-fold higher protein biosynthesis than TGF-β1-free controls at 

day 21 (p<0.01). 
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Discussion 

Delivery of TGF-β1 for in vivo applications requires controlled local release to ensure 

the desired, targeted effects of this potent growth factor2. Self-assembling peptide hydrogels are 

capable of retaining TGF-β1, maintaining its bioactivity, and stimulating chondrogenesis of 

encapsulated BMSCs over 21 days in culture. Uptake was only minimally reduced by 100-fold 

excess unlabeled TGF-β1 demonstrating the high loading capacity and potential dosing 

flexibility for these peptide hydrogels. Simple mixing with the peptide solution prior to assembly 

enabled efficient delivery to and stimulation of the encapsulated cells, resulting in degradation of 

the ligand and release of the radiolabel. 

While TGF-β1 encapsulation in acellular peptide and agarose hydrogels resulted in TGF-

β1 retention in both hydrogels for 21 days, uptake ratio experiments (Fig. 1) showed 

substantially higher TGF-β1 uptake for peptide than for agarose. Consistent results were seen in 

TGF-β1 release experiments (Fig. 2) with reduced initial and total release for peptide as 

compared to agarose, suggesting that the peptide was capable of sustaining TGF-β1 release at a 

slower rate for a longer period of time. These experiments demonstrate the capacity of TGF-β1 

to adsorb to two very different biomaterials, in addition to an interaction between TGF-β1 and 

(KLDL)3 peptide that was not present with agarose. This is consistent with the observed 

stimulation of chondrogenesis by TGF-β1 when delivered by both peptide and agarose 

hydrogels34. 

There are likely multiple mechanisms driving TGF-β1 adsorption including electrostatic 

interactions associated with the peptide hydrogel polyampholytic composition as well as 

excluded volume effects associated with both peptide and agarose. TGF-β1 has been adsorbed to 

a wide range of materials including titanium fiber35, collagen-coated and uncoated titanium 
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alloys36, acidic gelatin9,10, and functionalized dextrose13. The capacity for TGF-β1 to adsorb to 

this diverse range of materials is consistent with our results showing TGF-β1 adsorption to both 

uncharged agarose hydrogels and to an even greater extent to amphiphilic, zwitterionic peptide 

hydrogels. 

Given that the pore size of 2% low-melting-point agarose is ~200 nm37 and in (KLDL)3 

peptide the average fiber to fiber spacing is ~370nm38, while the dimensions of TGF-β1 are less 

than 6 nm39, the higher TGF-β1 uptake in (KLDL)3 peptide than agarose hydrogels is not likely 

to be due to restricted diffusion40. Rather, it may be related to the presence of negatively-charged 

aspartic acid residues in (KLDL)3 peptide since basic TGF-β1 (pI=9.5)10 has been shown to 

interact electrostatically with acidic gelatin9,10, anionic functionalized dextran13, and alginate 

sulfate41. In addition, electrostatic interactions determine the release of small dye molecules from 

self-assembling peptides22,40, and these peptides have been shown to bind numerous growth 

factors including PDGF-BB, VEGF-A, bFGF, and angiopoietin-1 likely through non-covalent 

adsorption to the peptide nanofibers20,40. 

Acellular peptide hydrogels preferentially retained macromolecular 125I-labeled species 

and lost small 125I-labeled species to the bath (Figs. 4B vs. 4C). In order to determine whether the 

peptide hydrogel itself would cause TGF degradation and hence increased the amount of small 

labeled species in the bath, we can compare the amount of small 125I-species released from 

acellular peptide hydrogels to the spontaneous dissociation of 125I-TGF-β1 (Fig. 4A). It is 

important to note that the size exclusion chromatography shown in Fig. 4 characterized the 

molecular size distribution of the sample and that the area under the curve in Fig. 4 does not 

represent the absolute amount of a particular species in any condition. To estimate the quantity of 

small labeled species released from acellular peptide hydrogels at day 7, the fraction of small 
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labeled species in Fig. 4B (42% from the area under the peak near Kav=1) can be multiplied with 

the amount released shown in Fig. 3B (2%/day at day 7 of the total loaded 125I-TGF) to yield a 

result of ~0.8% small labeled species released on day 7. This is consistent with the spontaneous 

dissociation of 125I-label from 125I-TGF-β1 (8% small species cumulatively generated from day 

0-7, Fig. 4A) and the substantially higher uptake ratio for 125I-TGF-β1 than for free 125I, which 

suggests that the small labeled species will diffuse out of the gels and accumulate in the bath (Fig. 

1). Thus we conclude that small labeled species present in the bath of acellular peptide hydrogels 

accumulated by passive dissociation of the 125I-label from TGF and diffusion out of the gel. 

Furthermore, the hydrogel did not cause or increase the degradation of TGF within acellular 

peptide hydrogels. 

BMSC-seeded peptide hydrogels released nearly twice as much 125I-labeled species as 

acellular hydrogels (Fig. 3C). Size exclusion chromatography analysis showed that BMSC-

seeded peptide hydrogels also preferentially released small radiolabeled species, in an equal or 

greater proportion than for the acellular gels (Figs. 4B vs. 4D, Day 7). Taken together, these 

results suggest that the additional release of small 125I-labeled species from BMSC-seeded 

peptide hydrogels is the result of active degradation of TGF-β1 by the encapsulated cells. This is 

consistent with radiolabel analyses performed previously for several ligands which show cellular 

internalization and breakdown of TGF-β142,43, epidermal growth factor44, and tumor necrosis 

factor45. In addition, these results are consistent with a recent study of fibrin hydrogel delivered 

TGF-β112 which showed that cell-seeded hydrogels dramatically reduced the release of 

immunoreactive TGF-β1 (as detected by ELISA) as compared to acellular gels.  

Cellular ligand internalization and active degradation, leading to depletion of the ligand 

concentration at the cell surface, is a mechanism consistent with a recent model showing the 
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importance of ligand depletion in dose dependent modulation of TGF-β1 signaling34,43. It is 

therefore possible that self-assembling peptides may enable control over the encapsulated cell 

phenotype by controlling the duration of exposure to TGF-β1. 

TGF-β1 uptake in peptide hydrogels depends on whether it is adsorbed prior to peptide 

assembly or allowed to diffuse into assembled hydrogels (Fig. 1). A potential explanation is that 

when TGF-β1 (< 6 nm39) is added to peptide solution prior to assembly, it gets entrapped within 

assembling nanofibers (~30nm diameter38) which is not possible when TGF-β1 is allowed to 

diffuse into previously assembled peptide. Such a mechanism may suggest that there is a 

population of TGF-β1 molecules that is inaccessible to encapsulated cells due to steric constraint 

within the nanofibers. This is consistent with the release per day for BMSC-seeded peptide 

hydrogels (Fig. 3B), which is much higher from days 0-8 and reaches a low steady level from 

days 11-21, potentially because all cell accessible TGF-β1 was consumed and released during 

days 0-8. Phosphorylation of Smad 2/3 by the TGF-β1 receptor was not able to be detected after 

day 7, consistent with this explanation. In addition, since as little as 4 days of TGF-β1 

stimulation upregulated proteoglycan synthesis at day 21, the TGF-β1 delivered by peptide 

hydrogels is likely sufficient to ensure progenitor cell commitment to chondrogenesis34.  

It is well established that chondrogenesis can be stimulated by continuously 

supplementing culture medium with TGF-β1 and refreshing the medium and TGF-β1 dose every 

2-3 days3,5,46. In this study, with 750 µL of medium added to 50 µL hydrogels, the total quantity 

of medium-delivered TGF-β1 added during 21 days of culture (assuming 9 medium changes and 

10 ng/mL TGF-β1) is more than 67 ng. In contrast, the total dose of TGF-β1 adsorbed to peptide 

hydrogels for chondrogenesis (100 ng/mL in a 50 µL gel for Ads-TGF-100) was 5 ng, over an 

order of magnitude lower. Nonetheless, 5ng of adsorbed TGF-β1 stimulated comparable sGAG 
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content and proteoglycan synthesis to medium-delivered TGF-β1 (Fig. 6) consistent with other 

recent reports47. Thus, self-assembling peptide hydrogels can be utilized to locally target a 

relatively small quantity of growth factor to encapsulated cells and produce a nearly equivalent 

chondrogenic outcome, demonstrating the efficiency and efficacy of this system. This is 

especially important in cartilage repair procedures since uncontrolled doses of TGF-β1 into the 

joint cavity in vivo can cause an inflammatory fibrotic response in multiple tissues48. 

 

Conclusion 

Self-assembling peptide hydrogels delivered bioactive TGF-β1 at a dose that stimulated 

comparable chondrogenesis to medium-delivered TGF-β1, while utilizing over an order of 

magnitude less growth factor. Peptide hydrogels had significantly higher TGF-β1 uptake and 

retained significantly more TGF-β1 during release experiments than agarose hydrogels. 

Introducing unlabeled TGF-β1 at two orders of magnitude higher concentration than radiolabeled 

TGF-β1 had a minor impact on uptake. Coupled with the easily synthesized 8-16 residue 

structure of the peptides, their capacity to deliver encapsulated cells, and their ability to fill 

irregularly shaped defects, these results demonstrate that self-assembling peptide hydrogels are a 

versatile controlled release platform suitable for testing in animal models of cartilage defect 

repair. 
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Figure 1. TGF-β1 Uptake Ratio in acellular KLD Peptide and Agarose Hydrogels. (A) 

Uptake ratio of 125I-TGF-β1 when added to the equilibration bath after gelation. Uptake ratio of 

free 125I label added to the bath after gelation shown for comparison. Unlabeled TGF-β1 was not 

added for experiments in (A). mean ± SEM; n=6; § vs. 125I-TGF; * vs. KLD; p<0.001. (B) 

Uptake ratio of 125I-TGF-β1 when added to the hydrogel solution prior to gelation 

simultaneously with 0, 10, or 100 ng/mL of unlabeled TGF-β1. mean ± SEM; n=4; # vs. 0 

ng/mL in KLD; † vs. 0 ng/mL in agarose; p<0.05. 

 

Figure 2. Acellular KLD peptide hydrogels retain higher TGF-β1 than agarose hydrogels. 

125I-TGF-β1 was adsorbed to the hydrogel prior to gelation for all experiments. Unlabeled TGF-

β1 was not added. (A) Cumulative release of 125I-TGF-β1 to the bath. (B) Total 125I-TGF-β1 

released to the bath (Released) and retained in the hydrogel (Retained) at day 21. mean ± SEM; 

n=6; * vs. KLD; p<0.05. 

 

Figure 3. BMSC-encapsulation increases TGF-β1 release from KLD peptide hydrogels. 

Both 125I-TGF-β1 (1.4 ng/mL) and unlabeled TGF-β1 (100 ng/mL) were adsorbed to the 

hydrogel prior to gelation for all experiments. (A) Cumulative release and (B) release per day to 

the bath of 125I-TGF-β1 for experiments terminated at 7, 14, & 21 days (D7, D14, & D21). (C) 

Total TGF-β1 released to the bath (Released) and retained in the hydrogel (Retained) at day 7, 14, 

& 21. mean ± SEM; n=4; † vs. day 7; ‡ vs. day 14; * vs. acellular; p<0.05. 

 

Figure 4. Size exculsion chromatography of 
125

I-labeled species by Sephadex G25. (A) 

Control samples of 125I-TGF-β1 stock solution after 7, 14, & 21 days of incubation at 37˚C. (B-
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D) 125I-TGF-β1 (1.4 ng/mL) plus unlabeled TGF-β1 (100 ng/mL) was adsorbed to KLD peptide 

hydrogels. (B) 125I-TGF-β1 released to the bath from acellular peptide hydrogels. (C) 125I-TGF-

β1 retained in acellular peptide hydrogels. (D) 125I-TGF-β1 released to the bath from bovine 

BMSC-seeded peptide hydrogels. 

 

Figure 5. Adsorbed TGF-β1 stimulates chondrogenesis of bovine BMSCs encapsulated in 

KLD peptide hydrogels. TGF-β1 was adsorbed to KLD peptide prior to gelation at 10 ng/mL 

(Ads-TGF-10) or 100 ng/mL (Ads-TGF-100). Control hydrogels were cultured in either TGF-

β1-free medium (TGF-Free) or with medium containing 10 ng/mL TGF-β1 (Med-TGF). (A) 

DNA content. (B) sGAG content. mean ± SEM; n=4; * vs. TGF-Free; † vs. Med-TGF; p<0.05. 

 

Figure 6. Adsorbed TGF-β1 stimulates chondrogenesis of young equine BMSCs 

encapsulated in KLD peptide hydrogels. TGF-β1 was adsorbed to KLD peptide prior to 

gelation at 100 ng/mL (Ads-TGF-100). Control hydrogels were cultured in either TGF-β1-free 

medium (TGF-Free) or with medium containing 10 ng/mL TGF-β1 (Med-TGF). (A) DNA 

content. (B) sGAG content. (C) Proteoglycan synthesis. (D) Percent sGAG retained within the 

hydrogel. (E) Hydrogel percent solid content. (F) Protein synthesis. mean ± SEM; n=8 (4 gels x 

2 horses); * vs. TGF-Free; † vs. Med-TGF; p<0.05. 
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Figure 1. TGF-β1 Uptake Ratio in acellular KLD Peptide and Agarose Hydrogels. (A) Uptake ratio of 125I-
TGF-β1 when added to the equilibration bath after gelation. Uptake ratio of free 125I label added to the bath 
after gelation shown for comparison. Unlabeled TGF-β1 was not added for experiments in (A). mean ± SEM; 

n=6; § vs. 125I-TGF; * vs. KLD; p<0.001. (B) Uptake ratio of 125I-TGF-β1 when added to the hydrogel 
solution prior to gelation simultaneously with 0, 10, or 100 ng/mL of unlabeled TGF-β1. mean ± SEM; n=4; 

# vs. 0 ng/mL in KLD; † vs. 0 ng/mL in agarose; p<0.05.  
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Figure 2. Acellular KLD peptide hydrogels retain higher TGF-β1 than agarose hydrogels. 125I-TGF-β1 was 
adsorbed to the hydrogel prior to gelation for all experiments. Unlabeled TGF-β1 was not added. (A) 

Cumulative release of 125I-TGF-β1 to the bath. (B) Total 125I-TGF-β1 released to the bath (Released) and 

retained in the hydrogel (Retained) at day 21. mean ± SEM; n=6; * vs. KLD; p<0.05.  
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Figure 3. BMSC-encapsulation increases TGF-β1 release from KLD peptide hydrogels. Both 125I-TGF-β1 (1.4 
ng/mL) and unlabeled TGF-β1 (100 ng/mL) were adsorbed to the hydrogel prior to gelation for all 

experiments. (A) Cumulative release and (B) release per day to the bath of 125I-TGF-β1 for experiments 

terminated at 7, 14, & 21 days (D7, D14, & D21). (C) Total TGF-β1 released to the bath (Released) and 
retained in the hydrogel (Retained) at day 7, 14, & 21. mean ± SEM; n=4; † vs. day 7; ‡ vs. day 14; * vs. 

acellular; p<0.05.  
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Figure 4. Size exculsion chromatography of 125I-labeled species by Sephadex G25. (A) Control samples of 
125I-TGF-β1 stock solution after 7, 14, & 21 days of incubation at 37˚C. (B-D) 125I-TGF-β1 (1.4 ng/mL) 
plus unlabeled TGF-β1 (100 ng/mL) was adsorbed to KLD peptide hydrogels. (B) 125I-TGF-β1 released to 

the bath from acellular peptide hydrogels. (C) 125I-TGF-β1 retained in acellular peptide hydrogels. (D) 
125I-TGF-β1 released to the bath from bovine BMSC-seeded peptide hydrogels.  
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Figure 5. Adsorbed TGF-β1 stimulates chondrogenesis of bovine BMSCs encapsulated in KLD peptide 
hydrogels. TGF-β1 was adsorbed to KLD peptide prior to gelation at 10 ng/mL (Ads-TGF-10) or 100 ng/mL 
(Ads-TGF-100). Control hydrogels were cultured in either TGF-β1-free medium (TGF-Free) or with medium 

containing 10 ng/mL TGF-β1 (Med-TGF). (A) DNA content. (B) sGAG content. mean ± SEM; n=4; * vs. TGF-
Free; † vs. Med-TGF; p<0.05.  
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Figure 6. Adsorbed TGF-β1 stimulates chondrogenesis of young equine BMSCs encapsulated in KLD peptide 
hydrogels. TGF-β1 was adsorbed to KLD peptide prior to gelation at 100 ng/mL (Ads-TGF-100). Control 
hydrogels were cultured in either TGF-β1-free medium (TGF-Free) or with medium containing 10 ng/mL 

TGF-β1 (Med-TGF). (A) DNA content. (B) sGAG content. (C) Proteoglycan synthesis. (D) Percent sGAG 
retained within the hydrogel. (E) Hydrogel percent solid content. (F) Protein synthesis. mean ± SEM; n=8 (4 

gels x 2 horses); * vs. TGF-Free; † vs. Med-TGF; p<0.05.  
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