175 research outputs found

    Cyanamide mode of action during inhibition of onion (Allium cepa L.) root growth involves disturbances in cell division and cytoskeleton formation

    Get PDF
    Cyanamide is an allelochemical produced by hairy vetch (Vicia villosa Roth.). Its phyotoxic effect on plant growth was examined on roots of onion (Allium cepa L.) bulbs. Water solution of cyanamide (2–10 mM) restricted growth of onion roots in a dose-dependent manner. Treatment of onion roots with cyanamide resulted in a decrease in root growth rate accompanied by a decrease in accumulation of fresh and dry weight. The inhibitory effect of cyanamide was reversed by its removal from the environment, but full recovery was observed only for tissue treated with this chemical at low concentration (2–6 mM). Cytological observations of root tip cells suggest that disturbances in cell division may explain the strong cyanamide allelopathic activity. Moreover, in cyanamide-treated onion the following changes were detected: reduction of mitotic cells, inhibition of proliferation of meristematic cells and cell cycle, and modifications of cytoskeleton arrangement

    Physiological and cell ultrastructure disturbances in wheat seedlings generated by Chenopodium murale hairy root exudate.

    Get PDF
    Chenopodium murale L. is an invasive weed species significantly interfering with wheat crop. However, the complete nature of its allelopathic influence on crops is not yet fully understood. In the present study, the focus is made on establishing the relation between plant morphophysiological changes and oxidative stress, induced by allelopathic extract. Phytotoxic medium of C. murale hairy root clone R5 reduced the germination rate (24% less than control value) of wheat cv. Nataša seeds, as well as seedling growth, diminishing shoot and root length significantly, decreased total chlorophyll content, and induced abnormal root gravitropism. The R5 treatment caused cellular structural abnormalities, reflecting on the root and leaf cell shape and organization. These abnormalities mostly included the increased number of mitochondria and reorganization of the vacuolar compartment, changes in nucleus shape, and chloroplast organization and distribution. The most significant structural changes were observed in cell wall in the form of amoeboid protrusions and folds leading to its irregular shape. These structural alterations were accompanied by an oxidative stress in tissues of treated wheat seedlings, reflected as increased level of H2O2 and other ROS molecules, an increase of radical scavenging capacity and total phenolic content. Accordingly, the retardation of wheat seedling growth by C. murale allelochemicals may represent a consequence of complex activity involving both cell structure alteration and physiological processes.This is a post-peer-review, pre-copyedit version of an article published in Protoplasma. The final authenticated version is available online at: [http://dx.doi.org/10.1007/s00709-018-1250-0

    Use and perspectives of nitric oxide donors in agriculture

    Get PDF
    [Mini-review] Nitric oxide (NO) has emerged in the last 30 years as a key molecule involved in many physiological processes in plants, animals and bacteria. Current research has shown that NO can be delivered via donor molecules. In such cases, the NO release rate is dependent on the chemical structure of the donor itself and on the chemical environment. Despite NO's powerful signaling effect in plants and animals, the application of NO donors in agriculture is currently not implemented and research remains mainly at the experimental level. Technological development in the field of NO donors is rapidly expanding in scope to include controlling seed germination, plant development, ripening and increasing shelf-life of produce. Potential applications in animal production have also been identified. This concise review focuses on the use of donors that have shown potential biotechnological applications in agriculture. Insights are provided into (i) the role of donors in plant production, (ii) the potential use of donors in animal production and (iii) future approaches to explore the use and applications of donors for the benefit of agricultur

    Petiole hyponasty: an ethylene-driven, adaptive response to changes in the environment

    Get PDF
    Hyponastic (upwardly bending) growth by leaves is a response of numerous plant species to adverse environmental conditions. This review summarises current knowledge on hyponasty with a particular focus on the role of ethylene in regulating this phenomenon and its possible adaptive significance

    Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways

    Full text link
    [EN] Plants are often exposed to high levels of nitric oxide (NO) that affects development and stress-triggered responses. However, the way in which plants sense NO is still largely unknown. Here we combine the analysis of early changes in the transcriptome of plants exposed to a short acute pulse of exogenous NO with the identification of transcription factors (TFs) involved in NO sensing. The NO-responsive transcriptome was enriched in hormone homeostasis and signaling-related genes. To assess events involved in NO sensing in hypocotyls, we used a functional sensing assay based on the NO-induced inhibition of hypocotyl elongation in etiolated seedlings. Hormone-related mutants and the TRANSPLANTA collection of transgenic lines conditionally expressing Arabidopsis TFs were screened for NO-triggered hypocotyl shortening. These approaches allowed the identification of hormone-related TFs, ethylene perception and signaling, strigolactone biosynthesis and signaling, and salicylate production and accumulation that are essential for or modulate hypocotyl NO sensing. Moreover, NO inhibits hypocotyl elongation through the positive and negative regulation of some abscisic acid (ABA) receptors and transcripts encoding brassinosteroid signaling components thereby also implicating these hormones in NO sensing.This work was supported by grants BIO2014-56067-P and BIO2017-82945-P from the Spanish Ministry of Economy, Industry and Competitiveness and FEDER funds. We thank the Genomics Unit of the Centro Nacional de Biotecnologia (CNB-CSIC, Madrid, Spain) for microarray processing. We gratefully acknowledged the kind donation of mutant seeds: Roberto Solano and Andrea Chini (CNB, Madrid, Spain) for the jaz and myc mutants; Paul Verslues (Institute of Plant and Microbial Biology, Academia Sinica, Taiwan) for the hai mutants; Javier Agusti, Pablo Tornero, and Pedro Rodriguez (IBMCP, Valencia, Spain) for the max, sid2eds5nahG, and pyr/pyl mutants, respectively; and Hiroaki Fujii (University of Turku, Finland) for the snrk2.3 and 2.9 mutants.Castillo López Del Toro, MC.; Coego Gonzalez, A.; Costa-Broseta, Á.; Leon Ramos, J. (2018). Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways. Journal of Experimental Botany. 69(21):5265-5278. https://doi.org/10.1093/jxb/ery286S52655278692
    corecore