95 research outputs found

    Untersuchungen zur Isolierung von Regulator-Genen des floralen Meristem-Identitäts-Gens FLORICAULA aus Antirrhinum majus

    Get PDF
    Eine weitere Titelaufnahme mit einem ausführlichen Abstract sowie einem inhaltlich gleichen Dokument (Speicherbedarf: 14 MB) finden Sie unter: http://kups.ub.uni-koeln.de/volltexte/2003/517

    LEO-PNT With Starlink: Development of a Burst Detection Algorithm Based on Signal Measurements

    Full text link
    Due to the strong dependency of our societies onGlobal Navigation Satellite Systems and their vulnerability to outages, there is an urgent need for additional navigation systems. A possible approach for such an additional system uses the communication signals of the emerging LEO satellite mega-constellations as signals of opportunity. The Doppler shift of those signals is leveraged to calculate positioning, navigation and timing information. Therefore the signals have to be detected and the frequency has to be estimated. In this paper, we present the results of Starlink signal measurements. The results are used to develope a novel correlation-based detection algorithm for Starlink burst signals. The carrier frequency of the detected bursts is measured and the attainable positioning accuracy is estimated. It is shown, that the presented algorithms are applicable for a navigation solution in an operationally relevant setup using an omnidirectional antenna

    Pathological mutations in PNKP trigger defects in DNA single-strand break repair but not DNA double-strand break repair

    Get PDF
    Hereditary mutations in polynucleotide kinase-phosphatase (PNKP) result in a spectrum of neurological pathologies ranging from neurodevelopmental dysfunction in microcephaly with early onset seizures (MCSZ) to neurodegeneration in ataxia oculomotor apraxia-4 (AOA4) and Charcot-Marie-Tooth disease (CMT2B2). Consistent with this, PNKP is implicated in the repair of both DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs); lesions that can trigger neurodegeneration and neurodevelopmental dysfunction, respectively. Surprisingly, however, we did not detect a significant defect in DSB repair (DSBR) in primary fibroblasts from PNKP patients spanning the spectrum of PNKP-mutated pathologies. In contrast, the rate of SSB repair (SSBR) is markedly reduced. Moreover, we show that the restoration of SSBR in patient fibroblasts collectively requires both the DNA kinase and DNA phosphatase activities of PNKP, and the fork-head associated (FHA) domain that interacts with the SSBR protein, XRCC1. Notably, however, the two enzymatic activities of PNKP appear to affect different aspects of disease pathology, with reduced DNA phosphatase activity correlating with neurodevelopmental dysfunction and reduced DNA kinase activity correlating with neurodegeneration. In summary, these data implicate reduced rates of SSBR, not DSBR, as the source of both neurodevelopmental and neurodegenerative pathology in PNKP-mutated disease, and the extent and nature of this reduction as the primary determinant of disease severity

    Diffraction-based determination of single-crystal elastic constants of polycrystalline titanium alloys

    Get PDF
    Single-crystal elastic constants have been derived by lattice strain measurements using neutron diffraction on polycrystalline Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo and Ti-3Al-8V-6Cr-4Zr-4Mo alloy samples. A variety of model approximations for the grain-to-grain interactions, namely approaches by Voigt, Reuss, Hill, Kroener, de Wit and Matthies, including texture weightings, have been applied and compared. A load-transfer approach for multiphase alloys was also implemented and the results are compared with single-phase data. For the materials under investigation, the results for multiphase alloys agree well with the results for single-phase materials in the corresponding phases. In this respect, all eight elastic constants in the dual-phase Ti-6Al-2Sn-4Zr-6Mo alloy have been derived for the first time

    Analysis of Array-CGH Data Using the R and Bioconductor Software Suite

    Get PDF
    Background. Array-based comparative genomic hybridization (array-CGH) is an emerging high-resolution and high-throughput molecular genetic technique that allows genome-wide screening for chromosome alterations. DNA copy number alterations (CNAs) are a hallmark of somatic mutations in tumor genomes and congenital abnormalities that lead to diseases such as mental retardation. However, accurate identification of amplified or deleted regions requires a sequence of different computational analysis steps of the microarray data. Results. We have developed a user-friendly and versatile tool for the normalization, visualization, breakpoint detection, and comparative analysis of array-CGH data which allows the accurate and sensitive detection of CNAs. Conclusion. The implemented option for the determination of minimal altered regions (MARs) from a series of tumor samples is a step forward in the identification of new tumor suppressor genes or oncogenes

    Powder diffraction computed tomography: A combined synchrotron and neutron study

    Get PDF
    Diffraction and imaging using x-rays and neutrons are widely utilized in different fields of engineering, biology, chemistry and/or materials science. The additional information gained from the diffraction signal by x-ray diffraction and computed tomography (XRD-CT) can give this method a distinct advantage in materials science applications compared to classical tomography. Its active development over the last decade revealed structural details in a non-destructive way with unprecedented sensitivity. In the current contribution an attempt to adopt the well-established XRD-CT technique for neutron diffraction computed tomography (ND-CT) is reported. A specially designed \u27phantom\u27, an object displaying adaptable contrast sufficient for both XRD-CT and ND-CT, was used for method validation. The feasibility of ND-CT is demonstrated, and it is also shown that the ND-CT technique is capable to provide a non-destructive view into the interior of the \u27phantom\u27 delivering structural information consistent with a reference XRD-CT experiment

    Hype or hope? High placebo response in major depression treatment with ketamine and esketamine: a systematic review and meta-analysis

    Get PDF
    BackgroundKetamine and esketamine offer a novel approach in the pharmacological treatment of major depressive disorder (MDD). This meta-analysis aimed to investigate the placebo response in double-blind, randomized controlled studies (RCTs) on patients with MDD receiving ketamine or esketamine.MethodsFor this systematic review and meta-analysis Medline (PubMed), Cochrane Central Register of Controlled Trials (CENTRAL), PsycInfo and Embase databases were systematically searched for citations published up to March 17, 2023. A total number of 5017 abstracts was identified. Quality of the included trials was assessed with the Cochrane risk-of-bias tool. The meta-analysis was performed using a restricted maximum likelihood model. This study is registered with PROSPERO, number CRD42022377591.ResultsA total number of 14 studies and 1100 participants (593 in the medication group and 507 in the placebo group) meeting the inclusion criteria were selected. We estimated the pooled effect sizes of the overall placebo (dpl = -1.85 [CI 95%: -2.9 to -0.79] and overall treatment (dtr = -2.57; [CI 95% -3.36 to -1.78]) response. The overall placebo response accounts for up to 72% of the overall treatment response. Furthermore, we performed subgroup analysis of 8 studies for the for the 7 days post-intervention timepoint. Seven days post-intervention the placebo response (dpl 7d = -1.98 [CI 95%: -3.26 to -0.69]) accounts for 66% of the treatment response (dtr 7d = - 3.01 [CI 95%, -4.28 to -1.74]).ConclusionKetamine and esketamine show large antidepressant effects. However, our findings suggest that the placebo response plays a significant role in the antidepressant response and should be used for the benefit of the patients in clinical practice.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/, identifier CRD42022377591

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/

    Systematic genetic analysis of pediatric patients with autoinflammatory diseases

    Get PDF
    Monogenic autoinflammatory diseases (AID) encompass a growing group of inborn errors of the innate immune system causing unprovoked or exaggerated systemic inflammation. Diagnosis of monogenic AID requires an accurate description of the patients’ phenotype, and the identification of highly penetrant genetic variants in single genes is pivotal. We performed whole exome sequencing (WES) of 125 pediatric patients with suspected monogenic AID in a routine genetic diagnostic setting. Datasets were analyzed in a step-wise approach to identify the most feasible diagnostic strategy. First, we analyzed a virtual gene panel including 13 genes associated with known AID and, if no genetic diagnosis was established, we then analyzed a virtual panel including 542 genes published by the International Union of Immunological Societies associated including all known inborn error of immunity (IEI). Subsequently, WES data was analyzed without pre-filtering for known AID/IEI genes. Analyzing 13 genes yielded a definite diagnosis in 16.0% (n = 20). The diagnostic yield was increased by analyzing 542 genes to 20.8% (n = 26). Importantly, expanding the analysis to WES data did not increase the diagnostic yield in our cohort, neither in single WES analysis, nor in trio-WES analysis. The study highlights that the cost- and time-saving analysis of virtual gene panels is sufficient to rapidly confirm the differential diagnosis in pediatric patients with AID. WES data or trio-WES data analysis as a first-tier diagnostic analysis in patients with suspected monogenic AID is of limited benefit

    Modern Ab Initio Approaches and Applications in Few-Nucleon Physics with A \ge 4

    Full text link
    We present an overview of the evolution of ab initio methods for few-nucleon systems with A \ge 4, tracing the progress made that today allows precision calculations for these systems. First a succinct description of the diverse approaches is given. In order to identify analogies and differences the methods are grouped according to different formulations of the quantum mechanical many-body problem. Various significant applications from the past and present are described. We discuss the results with emphasis on the developments following the original implementations of the approaches. In particular we highlight benchmark results which represent important milestones towards setting an ever growing standard for theoretical calculations. This is relevant for meaningful comparisons with experimental data. Such comparisons may reveal whether a specific force model is appropriate for the description of nuclear dynamics.Comment: extension of the previous version from 70 to 78 pages, 24 figures, 17 tables, in press: Progress in Particle and Nuclear Physic
    corecore