41 research outputs found

    Biomarkers in osteoarthritis

    Get PDF
    Biomarkers aid the study of osteoarthritis (OA) in a number of different ways. In this article we summarise briefly their multiple uses and reflect on how the study reported in a previous edition of Arthritis Research & Therapy should promote further investigation of cartilage oligomeric matrix protein (COMP). COMP is foremost among hitherto investigated biomarkers and is most consistently shown to predict knee OA progression. Precisely what role it plays in OA pathogenesis remains unclear and elucidating this may be key to defining, and then targeting, the cellular pathways involved in OA

    Baseline predictors of remission, pain and fatigue in rheumatoid arthritis: the TITRATE trial.

    Get PDF
    BACKGROUND: Clinical trials show intensive treatment to induce remission is effective in patients with highly active rheumatoid arthritis (RA). The TITRATE trial showed that the benefits of intensive treatment also extend to moderately active RA. However, many patients failed to achieve remission or show improvements in pain and fatigue. We investigated whether baseline predictors could identify treatment non-responders. METHODS: The impact of obesity, depression, anxiety and illness perception on RA outcomes, including disease activity, remission, pain and fatigue were determined using a pre-planned secondary analysis of the TITRATE trial data. RESULTS: Body mass index was associated with disease activity levels and remission: obese patients had a higher overall disease activity and fewer obese patients achieved remission. Intensive management was not associated with increased remission in these patients. Obesity was also associated with increased overall pain and fatigue. Anxiety, depression and health perceptions had no discernible impact on disease activity but were associated with high levels of pain and fatigue. There was a strong association between anxiety and high pain scores; and between depression and high fatigue scores; and health perception was strongly related to both. None of the predictors had an important impact on pain and fatigue reduction in cross-sectional analysis. CONCLUSIONS: Disease activity is higher in obese patients and they have fewer remissions over 12 months. Anxiety, depression and health perceptions were associated with higher pain and fatigue scores. Intensive management strategies need to account for these baseline features as they impact significantly on clinical and psychological outcomes. TRIAL REGISTRATION: ISRCTN 70160382 ; date registered 16 January 2014

    Dietary garlic and hip osteoarthritis: evidence of a protective effect and putative mechanism of action

    Get PDF
    Background Patterns of food intake and prevalent osteoarthritis of the hand, hip, and knee were studied using the twin design to limit the effect of confounding factors. Compounds found in associated food groups were further studied in vitro. Methods Cross-sectional study conducted in a large population-based volunteer cohort of twins. Food intake was evaluated using the Food Frequency Questionnaire; OA was determined using plain radiographs. Analyses were adjusted for age, BMI and physical activity. Subsequent in vitro studies examined the effects of allium-derived compounds on the expression of matrix-degrading proteases in SW1353 chondrosarcoma cells. Results Data were available, depending on phenotype, for 654-1082 of 1086 female twins (median age 58.9 years; range 46-77). Trends in dietary analysis revealed a specific pattern of dietary intake, that high in fruit and vegetables, showed an inverse association with hip OA (p = 0.022). Consumption of 'non-citrus fruit' (p = 0.015) and 'alliums' (p = 0.029) had the strongest protective effect. Alliums contain diallyl disulphide which was shown to abrogate cytokine-induced matrix metalloproteinase expression. Conclusions Studies of diet are notorious for their confounding by lifestyle effects. While taking account of BMI, the data show an independent effect of a diet high in fruit and vegetables, suggesting it to be protective against radiographic hip OA. Furthermore, diallyl disulphide, a compound found in garlic and other alliums, represses the expression of matrix-degrading proteases in chondrocyte-like cells, providing a potential mechanism of action

    Process evaluation for complex interventions in primary care: understanding trials using the normalization process model

    Get PDF
    Background: the Normalization Process Model is a conceptual tool intended to assist in understanding the factors that affect implementation processes in clinical trials and other evaluations of complex interventions. It focuses on the ways that the implementation of complex interventions is shaped by problems of workability and integration.Method: in this paper the model is applied to two different complex trials: (i) the delivery of problem solving therapies for psychosocial distress, and (ii) the delivery of nurse-led clinics for heart failure treatment in primary care.Results: application of the model shows how process evaluations need to focus on more than the immediate contexts in which trial outcomes are generated. Problems relating to intervention workability and integration also need to be understood. The model may be used effectively to explain the implementation process in trials of complex interventions.Conclusion: the model invites evaluators to attend equally to considering how a complex intervention interacts with existing patterns of service organization, professional practice, and professional-patient interaction. The justification for this may be found in the abundance of reports of clinical effectiveness for interventions that have little hope of being implemented in real healthcare setting

    Identification of novel loci associated with hip shape:a meta-analysis of genome-wide association studies

    Get PDF
    This study was funded by Arthritis Research UK project grant 20244, which also provided salary funding for DB and CVG. LP works in the MRC Integrative Epidemiology Unit, a UK MRC‐funded unit (MC_ UU_ 12013/4 & MC_UU_12013/5). ALSPAC: We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. ALSPAC data collection was supported by the Wellcome Trust (grants WT092830M; WT088806; WT102215/2/13/2), UK Medical Research Council (G1001357), and University of Bristol. The UK Medical Research Council and the Wellcome Trust (102215/2/13/2) and the University of Bristol provide core support for ALSPAC. Framingham Heart Study: The Framingham Osteoporosis Study is supported by grants from the National Institute of Arthritis, Musculoskeletal, and Skin Diseases and the National Institute on Aging (R01 AR41398, R01 AR 061162, R01 AR050066, and R01 AR061445). The analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource project. The Framingham Heart Study of the National Heart, Lung, and Blood Institute of the National Institutes of Health and Boston University School of Medicine were supported by the National Heart, Lung, and Blood Institute's Framingham Heart Study (N01‐HC‐25195) and its contract with Affymetrix, Inc., for genotyping services (N02‐HL‐6‐4278). Analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. A portion of this research was conducted using the Linux Cluster for Genetic Analysis (LinGA‐II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. DK was also supported by Israel Science Foundation grant #1283/14. TDC and DR thank Dr Claire Reardon and the entire Harvard University Bauer Core facility for assistance with ATAC‐seq next generation sequencing. This work was funded in part by the Harvard University Milton Fund, NSF (BCS‐1518596), and NIH NIAMS (1R01AR070139‐01A1) to TDC. MrOS: The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provides funding for the MrOS ancillary study “Replication of candidate gene associations and bone strength phenotype in MrOS” under the grant number R01 AR051124. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provides funding for the MrOS ancillary study “GWAS in MrOS and SOF” under the grant number RC2 AR058973. SOF: The Study of Osteoporotic Fractures (SOF) is supported by National Institutes of Health funding. The National Institute on Aging (NIA) provides support under the following grant numbers: R01 AG005407, R01 AR35582, R01 AR35583, R01 AR35584, R01 AG005394, R01 AG027574, and R01 AG027576. TwinsUK: The study was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007‐2013). The study also receives support from the National Institute for Health Research (NIHR)‐funded BioResource, Clinical Research Facility, and Biomedical Research Centre based at Guy's and St Thomas’ NHS Foundation Trust in partnership with King's College London. SNP genotyping was performed by The Wellcome Trust Sanger Institute and National Eye Institute via NIH/CIDR. This study was also supported by the Australian National Health and Medical Research Council (project grants 1048216 and 1127156), the Sir Charles Gairdner Hospital RAC (SGW), and the iVEC/Pawsey Supercomputing Centre (project grants Pawsey0162 and Director2025 [SGW]). The salary of BHM was supported by a Raine Medical Research Foundation Priming Grant. The UmeĂ„ Fracture and Osteoporosis Study (UFO) is supported by the Swedish Research Council (K20006‐72X‐20155013), the Swedish Sports Research Council (87/06), the Swedish Society of Medicine, the Kempe‐Foundation (JCK‐1021), and by grants from the Medical Faculty of UmeĂ„ Unviersity (ALFVLL:968:22‐2005, ALFVL:‐937‐2006, ALFVLL:223:11‐2007, and ALFVLL:78151‐2009) and from the county council of VĂ€sterbotten (Spjutspetsanslag VLL:159:33‐2007). This publication is the work of the authors and does not necessarily reflect the views of any funders. None of the funders had any influence on data collection, analysis, interpretation of the results, or writing of the paper. DB will serve as the guarantor of the paper. Authors’ roles: Study conception and design: DAB, JSG, RMA, LP, DK, and JHT. Data collection: DJ, DPK, ESO, SRC, NEL, BHM, FMKW, JBR, SGW, TDC, BGF, DAL, CO, and UP‐L. Data analysis: DAB, DSE, FKK, JSG, FRS, CVG, RJB, RMA, SGW, EG, TDC, DR, and TB. Data interpretation: JSG, RMA, TDC, DR, DME, LP, DK, and JHT. Drafting manuscript: DAB and JHT. Revising manuscript content: JHT. All authors approved the final version of manuscript. DAB takes responsibility for the integrity of the data analysis.Peer reviewedPublisher PD

    Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy

    Get PDF
    Background Copy number variants (CNVs) have been linked to neurodevelopmental disorders such as intellectual disability (ID), autism, epilepsy and psychiatric disease. There are few studies of CNVs in patients with both ID and epilepsy. Methods We evaluated the range of rare CNVs found in 80 Welsh patients with ID or developmental delay (DD), and childhood-onset epilepsy. We performed molecular cytogenetic testing by single nucleotide polymorphism array or microarray-based comparative genome hybridisation. Results 8.8 % (7/80) of the patients had at least one rare CNVs that was considered to be pathogenic or likely pathogenic. The CNVs involved known disease genes (EHMT1, MBD5 and SCN1A) and imbalances in genomic regions associated with neurodevelopmental disorders (16p11.2, 16p13.11 and 2q13). Prompted by the observation of two deletions disrupting SCN1A we undertook further testing of this gene in selected patients. This led to the identification of four pathogenic SCN1A mutations in our cohort. Conclusions We identified five rare de novo deletions and confirmed the clinical utility of array analysis in patients with ID/DD and childhood-onset epilepsy. This report adds to our clinical understanding of these rare genomic disorders and highlights SCN1A mutations as a cause of ID and epilepsy, which can easily be overlooked in adults

    Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects.

    Get PDF
    Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course
    corecore