140 research outputs found

    Pioneer Venus polarimetry and haze optical thickness

    Get PDF
    The Pioneer Venus mission provided us with high-resolution measurements at four wavelengths of the linear polarization of sunlight reflected by the Venus atmosphere. These measurements span the complete phase angle range and cover a period of more than a decade. A first analysis of these data by Kawabata et al. confirmed earlier suggestions of a haze layer above and partially mixed with the cloud layer. They found that the haze exhibits large spatial and temporal variations. The haze optical thickness at a wavelength of 365 nm was about 0.06 at low latitudes, but approximately 0.8 at latitudes from 55 deg poleward. Differences between morning and evening terminator have also been reported by the same authors. Using an existing cloud/haze model of Venus, we study the relationship between the haze optical thickness and the degree of linear polarization. Variations over the visible disk and phase angle dependence are investigated. For that purpose, exact multiple scattering computations are compared with Pioneer Venus measurements. To get an impression of the variations over the visible disk, we have first studied scans of the polarization parallel to the intensity equator. After investigating a small subset of the available data we have the following results. Adopting the haze particle characteristics given by Kawabata et al., we find a thickening of the haze at increasing latitudes. Further, we see a difference in haze optical thickness between the northern and southern hemispheres that is of the same order of magnitude as the longitudinal variation of haze thickness along a scan line. These effects are most pronounced at a wavelength of 935 nm. We must emphasize the tentative nature of the results, because there is still an enormous amount of data to be analyzed. We intend to combine further polarimetric research of Venus with constraints on the haze parameters imposed by physical and chemical processes in the atmosphere

    Power-Based Droop Control in DC Microgrids Enabling Seamless Disconnection From Upstream Grids

    Get PDF
    This paper proposes a local power-based droop controller for distributed energy resource converters in dc microgrids that are connected to upstream grids by grid-interface converters. During normal operation, the grid-interface converter imposes the microgrid bus voltage, and the proposed controller allows power flow regulation at distributed energy resource converters\u2019 output. On the other hand, during abnormal operation of the grid-interface converter (e.g., due to faults in the upstream grid), the proposed controller allows bus voltage regulation by droop control. Notably, the controller can autonomously convert from power flow control to droop control, without any need of bus voltage variation detection schemes or communication with other microgrid components, which enables seamless transitions between these two modes of operation. Considering distributed energy resource converters employing the power-based droop control, the operation modes of a single converter and of the whole microgrid are defined and investigated herein. The controller design is also introduced. Furthermore, the power sharing performance of this control approach is analyzed and compared with that of classical droop control. The experimental results from a laboratory-scale dc microgrid prototype are reported to show the final performances of the proposed power-based droop control

    Characterizing exoplanetary atmospheres through infrared polarimetry

    Full text link
    Planets can emit polarized thermal radiation, just like brown dwarfs. We present calculated thermal polarization signals from hot exoplanets, using an advanced radiative transfer code that fully includes all orders of scattering by gaseous molecules and cloud particles. The code spatially resolves the disk of the planet, allowing simulations for horizontally inhomogeneous planets. Our results show that the degree of linear polarization, P, of an exoplanet's thermal radiation is expected to be highest near the planet's limb and that this P depends on the temperature and its gradient, the scattering properties and the distribution of the cloud particles. Integrated over the disk of a spherically symmetric planet, P of the thermal radiation equals zero. However, for planets that appear spherically asymmetric, e.g. due to flattening, cloud bands or spots in their atmosphere, differences in their day and night sides, and/or obscuring rings, P is often larger than 0.1 %, in favorable cases even reaching several percent at near-infrared wavelengths. Detection of thermal polarization signals can give access to planetary parameters that are otherwise hard to obtain: it immediately confirms the presence of clouds, and P can then constrain atmospheric inhomogeneities and the flattening due to the planet's rotation rate. For zonally symmetric planets, the angle of polarization will yield the components of the planet's spin axis normal to the line-of-sight. Finally, our simulations show that P is generally more sensitive to variability in a cloudy planet's atmosphere than the thermal flux is, and could hence better reveal certain dynamical processes.Comment: 9 pages, 5 figures, accepted for publication in Ap

    Towards mechanisms and standardization in extracellular vesicle and extracellular RNA studies: results of a worldwide survey

    Get PDF
    The discovery that extracellular vesicles (EVs) can transfer functional extracellular RNAs (exRNAs) between cells opened new avenues into the study of EVs in health and disease. Growing interest in EV RNAs and other forms of exRNA has given rise to research programmes including but not limited to the Extracellular RNA Communication Consortium (ERCC) of the US National Institutes of Health. In 2017, the International Society for Extracellular Vesicles (ISEV) administered a survey focusing on EVs and exRNA to canvass-related views and perceived needs of the EV research community. Here, we report the results of this survey. Overall, respondents emphasized opportunities for technical developments, unraveling of molecular mechanisms and standardization of methodologies to increase understanding of the important roles of exRNAs in the broader context of EV science. In conclusion, although exRNA biology is a relatively recent emphasis in the EV field, it has driven considerable interest and resource commitment. The ISEV community looks forward to continuing developments in the science of exRNA and EVs, but without excluding other important molecular constituents of EVs

    Discrepant perceptions of communication, teamwork and situation awareness among surgical team members

    Get PDF
    Objective To assess surgical team members’ differences in perception of non-technical skills. Design Questionnaire design. Setting Operating theatres (OTs) at one university hospital, three teaching hospitals and one general hospital in the Netherlands. Participants Sixty-six surgeons, 97 OT nurses, 18 anaesthetists and 40 nurse anaesthetists. Methods All surgical team members, of five hospitals, were asked to complete a questionnaire and state their opinion on the current state of communication, teamwork and situation awareness at the OT. Results Ratings for ‘communication’ were significantly different, particularly between surgeons and all other team members (P ? 0.001). The ratings for ‘teamwork’ differed significantly between all team members (P ? 0.005). Within ‘situation awareness’ significant differences were mainly observed for ‘gathering information’ between surgeons and other team members (P < 0.001). Finally, 72–90% of anaesthetists, OT nurses and nurse anaesthetists rated routine team briefings and debriefings as inadequate. Conclusions This study shows discrepancies on many aspects in perception between surgeons and other surgical team members concerning communication, teamwork and situation awareness. Future research needs to ascertain whether these discrepancies are linked to greater risk of adverse events or to process as well as systems failures. Establishing this link would support implementation and use of complex team interventions that intervene at multiple levels of the healthcare systemIndustrial Design Engineerin

    Aviation Fuel Tracer Simulation: Model Intercomparison and Implications

    Get PDF
    An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key Endings are that subsonic aircraft emissions: (1) have not be responsible for the observed water vapor trends at 40 deg N; (2) could be a significant source of soot mass near 12 km, but not at 20 km; (3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause; and (4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/sq m and -0.013 W/sq m due to emitted soot and sulfur, respectively

    The influence of non-isotropic scattering of thermal radiation on spectra of brown dwarfs and hot exoplanets

    Get PDF
    (abridged) We calculate near-infrared thermal emission spectra using a doubling-adding radiative transfer code, which includes scattering by clouds and haze. Initial temperature profiles and cloud optical depths are taken from the drift-phoenix brown dwarf model. As is well known, cloud particles change the spectrum compared to when clouds are ignored. The clouds reduce fluxes in the near-infrared spectrum and make it redder than for the clear sky case. We also confirm that not including scattering in the spectral calculations can result in errors on the spectra of many tens of percent, both in magnitude and in variations with wavelength. This is especially apparent for particles that are larger than the wavelength and only have little iron in them. Scattering particles will show deeper absorption features than absorbing (e.g. iron) particles and particle size will also affect the calculated infrared colours. Large particles also tend to be strongly forward-scattering, and we show that assuming isotropic scattering in this case also leads to very large errors in the spectrum. Thus, care must be taken in the choice of radiative transfer method for heat balance or spectral calculations when clouds are present in the atmosphere. Besides the choice of radiative transfer method, the type of particles that are predicted by models will change conclusions about e.g. infrared colours and trace gas abundances. As a result, knowledge of the scattering properties of the clouds is essential when deriving temperature profiles or gas abundances from direct infrared observations of exoplanets or brown dwarfs and from secondary eclipse measurements of transiting exoplanets, since scattering clouds will change the depth of gas absorption features, among other things. Thus, ignoring the presence of clouds can yield retrieved properties that differ significantly from the real atmospheric properties.Comment: Accepted for publication in Astronomy and Astrophysics. The abstract and a part of the introduction have been re-worded compared to the accepted version to avoid misinterpretation of the paper as much as possibl
    • 

    corecore