1,470 research outputs found

    Prevalence of PD‑L1 expression is associated with EMAST, density of peritumoral T‑cells and recurrence‑free survival in operable non‑metastatic colorectal cancer

    Get PDF
    Introduction Microsatellite instability (MSI) predict response to anti-PD1 immunotherapy in colorectal cancer (CRC). CRCs with MSI have higher infiltration of immune cells related to a better survival. Elevated Microsatellite Alterations at Tetranucleotides (EMAST) is a form of MSI but its association with PD-L1 expression and immune-cell infiltration is not known. Methods A consecutive, observational cohort of patients undergoing surgery for CRC. EMAST and clinicopathological characteristics were investigated against PD-L1, as well as CD3 and CD8 expression in the invasive margin or tumour centre (Immunoscore). Difference in survival between groups was assessed by log rank test. Results A total of 149 stage I–III CRCs patients, with a median follow up of 60.1 months. Patients with PD-L1+ tumours (7%) were older (median 79 vs 71 years, p = 0.045) and had EMAST+ cancers (OR 10.7, 95% CI 2.2–51.4, p = 0.001). Recurrence-free survival was longer in cancers with PD-L1+ immune cells (HR 0.35, 95% CI 0.16–0.76, p = 0.008, independent of EMAST) and high Immunoscore (HR 0.10, 95% CI 0.01–0.72, p = 0.022). Patients expressing PD-L1 in immune cells had longer disease-specific survival (HR 0.28, 95% CI 0.10–0.77, p = 0.014). Conclusions Higher Immunoscore (CD3/CD8 cells) and expression of tumour PD-L1 is found in CRCs with EMAST. Lymphocytic infiltrate and peritumoral PD-L1 expression have prognostic value in CRC.publishedVersio

    A template to quantify the location and density of CD3 + and CD8 + tumor-infiltrating lymphocytes in colon cancer by digital pathology on whole slides for an objective, standardized immune score assessment

    Get PDF
    Background In colon cancer, the location and density of tumor-infiltrating lymphocytes (TILs) can classify patients into low and high-risk groups for prognostication. While a commercially available ‘Immunoscore®’ exists, the incurred expenses and copyrights may prevent universal use. The aim of this study was to develop a robust and objective quantification method of TILs in colon cancer. Methods A consecutive, unselected series of specimens from patients with colon cancer were available for immunohistochemistry and assessment of TILs by automated digital pathology. CD3 + and CD8 + cells at the invasive margin and in tumor center were assessed on consecutive sections using automated digital pathology and image analysis software (Visiopharm®). An algorithm template for whole slide assessment, generated cell counts per square millimeters (cells/mm2), from which the immune score was calculated using distribution volumes. Furthermore, immune score was compared with clinical and histopathological characteristics to confirm its relevance. Results Based on the quantified TILs numbers by digital image analyses, patients were classified into low (n = 83, 69.7%), intermediate (n = 14, 11.8%) and high (n = 22, 18.5%) immune score groups. High immune score was associated with stage I–II tumors (p = 0.017) and a higher prevalence of microsatellite instable (MSI) tumors (p = 0.030). MSI tumors had a significantly higher numbers of CD3 + TILs in the invasive margin and CD8 + TILs in both tumor center and invasive margin, compared to microsatellite stable (MSS) tumors. Conclusion A digital template to quantify an easy-to-use immune score corresponds with clinicopathological features and MSI in colon cancer.publishedVersio

    A template to quantify the location and density of CD3 + and CD8 + tumor-infiltrating lymphocytes in colon cancer by digital pathology on whole slides for an objective, standardized immune score assessment

    Get PDF
    Background: In colon cancer, the location and density of tumor-infiltrating lymphocytes (TILs) can classify patients into low and high-risk groups for prognostication. While a commercially available ‘Immunoscore®’ exists, the incurred expenses and copyrights may prevent universal use. The aim of this study was to develop a robust and objective quantification method of TILs in colon cancer. Methods: A consecutive, unselected series of specimens from patients with colon cancer were available for immunohistochemistry and assessment of TILs by automated digital pathology. CD3 + and CD8 + cells at the invasive margin and in tumor center were assessed on consecutive sections using automated digital pathology and image analysis software (Visiopharm®). An algorithm template for whole slide assessment, generated cell counts per square millimeters (cells/mm2), from which the immune score was calculated using distribution volumes. Furthermore, immune score was compared with clinical and histopathological characteristics to confirm its relevance. Results: Based on the quantified TILs numbers by digital image analyses, patients were classified into low (n = 83, 69.7%), intermediate (n = 14, 11.8%) and high (n = 22, 18.5%) immune score groups. High immune score was associated with stage I–II tumors (p = 0.017) and a higher prevalence of microsatellite instable (MSI) tumors (p = 0.030). MSI tumors had a significantly higher numbers of CD3 + TILs in the invasive margin and CD8 + TILs in both tumor center and invasive margin, compared to microsatellite stable (MSS) tumors. Conclusion: A digital template to quantify an easy-to-use immune score corresponds with clinicopathological features and MSI in colon cancer.publishedVersio

    Speed breeding is a powerful tool to accelerate crop research and breeding

    Get PDF
    The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand1. This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called ‘speed breeding’, which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2–3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Human infection with MERS Coronavirus after exposure to infected camels, Saudi Arabia, 2013

    Get PDF
    We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species transmission. Camels may act as a direct source of human MERS-CoV infection

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Inflation and Dark Energy from spectroscopy at z > 2

    Get PDF

    Searching for neutrino transients below 1 TeV with IceCube

    Get PDF
    corecore