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Searching for neutrino transients below 1 TeV with IceCube

1. Introduction

In 2013, the IceCube Collaboration announced the first discovery of a diffuse extraterrestrial
flux of neutrino events[1]. Since that initial discovery, many searches for the source of the diffuse flux
of neutrinos have been performed, both by the IceCube collaboration and by the wider community.
To date, few potential sources have shown an excess of events in IceCube analyses with the notable
exception of TXS 0506+056[2]. While searches continue, more than ten years of data have already
been collected and increased integration time can only slowly improve existing limits. Newmethods
or samples provide a viable way to significantly improve the physics reach of the existing IceCube
detector.

In most searches for sources of astrophysical neutrino emission, charged-current muon neutrino
interactions with energies of TeV or higher are used. These events produce long-ranging muons
visible in the IceCube detector that can be reconstructed to within 1◦ of their source. Backgrounds
from muons produced in cosmic ray induced air showers above the detector provide the dominant
background in the southern sky, severely limiting searches for astrophysical sources. In order
to better detect sources in the southern sky, neutrinos of other flavors and interaction types are
necessary.

New samples are under development using cascade-like events[3] and starting track events[4].
These samples are sensitive to the same TeV emission energy range as the through-going track-like
analyses typically performed by IceCube, but can use vetoing techniques to reduce the background
from atmospheric muons, leading to significant improvements in physics reach in the southern sky.
Neutrino events at energies below a few hundred GeV are largely unexplored, however. By utilizing
and improving upon samples designed for atmospheric oscillations research, IceCube can test for
astrophysical neutrino sources in this energy regime.

2. Transients with Three Years of GRECO

IceCube is a cubic-kilometer neutrino detector installed in the ice at the geographic South
Pole[5] at depths of 1450 m and 2450 m below the surface. A total of 5160 digital optical
modules (DOMs) are arranged on 86 strings. Reconstruction of the direction, energy and flavor
of the neutrinos relies on the optical detection of Cherenkov radiation emitted by charged particles
produced in the interactions of neutrinos in the surrounding ice or the nearby bedrock. The
DeepCore subarray as defined in this analysis includes 8 densely instrumented strings optimized
for low energies plus 12 adjacent standard strings. DeepCore lowers the energy threshold of the
IceCube detector from 100 GeV to about 5 GeV.

Event samples using DeepCore have been used in several analyses, including searches for
neutrino oscillations[6]. DeepCore has also occasionally been used for astrophysical searches[7],
although only rarely. Using vetoing techniques[8], atmospheric muons from the southern sky can
be reduced while maintaining large numbers of atmospheric neutrinos.

The GRECO (GeV-Reconstructed Events with Containment for Oscillations) oscillation event
selection (analysis A of [6]), originally developed for measurement of tau neutrino appearance,
consists of data taken between April 2012 and May 2015, and may be used to search for low energy
astrophysical neutrino emission. The GRECO oscillation sample has a total rate of 0.87 mHz,
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Figure 1: The effective area for each of the three neutrino flavors in the three-year GRECO oscillation sample
compared to a previous DeepCore-based astrophysical neutrino sample[7]. Significant improvements in total
effective area of the GRECO oscillation sample (black, dashed) compared to the previous analysis (purple,
dashed) are visible below 100 GeV.

primarily due to atmospheric muon neutrino interactions at energies around 20 GeV. Events are
reconstructed with a hypothesis assuming both a hadronic interaction and an outgoing muon track.
The muon track is assumed to be minimum ionizing and the track length is included as a parameter
in the reconstruction, allowing a smooth transition between the standard cascade and track fits used
in IceCube. Most events used for higher energy searches are through-going tracks with average
directional reconstruction errors of less than 1◦. DeepCore events are low energy starting tracks
with approximately 10-20◦ resolution or cascades with resolutions of about 30-40◦.

The GRECO oscillation sample provides roughly uniform effective area, shown in Figure 1,
across the sky and across both muon and electron neutrinos below 100 GeV and shows a significant
improvement relative to previous DeepCore analyses. The large atmospheric flux and large angular
uncertainties provide a significant barrier for astrophysical neutrino searches, however. To limit
the contributions from background, the GRECO oscillation sample is used to search for transient
neutrino flares of timescales less than 600 seconds, giving an average expectation of 0.5 atmospheric
background events per flare across the full sky.

An untriggered flare search has been performed using the GRECO oscillation sample[9]. Time
periods with potential flares are identified by representing each event with a Gaussian kernel

 (C; C8 ,Δ) =
1

Δ
√

2c
exp

(
− (C − C8)2

2Δ2

)
(1)

where C= is the time of the observed event and Δ is an assumed bandwidth of 100 s. A kernel density
estimate (KDE) is produced by summing the contributions of each Gaussian kernel for each time C

' �� (C) =
#∑
8

 (C; C=,Δ) (2)
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where # is the total number of events. Periods of interest are defined by searching for periods when
' �� (C) is above a threshold of 905.80, chosen to limit the expected number of background search
windows to 100 across the available three years. The center of each period above threshold is used
to define the center of a search window of 600 s.

An unbinned likelihood is applied to each search window, given by

L(=B) =
(=B + 〈=1〉)#

#!
4−(=B+〈=1 〉)

#∏
8

(
=BS8

=B + 〈=1〉
+ 〈=1〉 B8
=B + 〈=1〉

)
, (3)

where =B is the number of signal events, 〈=1〉 is the expected number of background events in the
search window, # is the total number of events observed, and S8 and B8 are signal and background
probability density functions (PDFs) for each event 8. A likelihood ratio is used a as a test statistic

)( = log
L(=̂B)
L(0) = −=̂B +

#∑
8

log
(
=̂BS8
〈=1〉 B8

+ 1
)

(4)

with =̂B as the best-fit number of signal events observed during minimization.
The background PDF B8 is assumed to be constant in right ascension, but can vary as a

function of declination. The PDF is built using experimentally observed data assuming that signal
contributions are negligible relative to atmospheric backgrounds. Events are binned in 25 bins of
sin(X) and splined to provide a smooth distribution.

The signal PDF S8 assumes a Kent distribution with circularized errors of the form

S8 =
^8

4c sinh (^8)
exp (^8 cos ( |®GB>DA24 − ®G8 |)) (5)

where | ®GB>DA24 − ®G8 | is the angular distance between the assumed source position and event 8 and ^8
is related to the estimated angular resolution f8 by

^8 ≈
1
f2
8

. (6)

The values of f8 are estimated using the median angular error as a function of energy and
declination calculated from simulated signal spectra. Estimates for f8 , shown in Figure 5, are
performed separately for "track-like" (reconstructed track length longer than 50 m) or "cascade-like"
(reconstructed track length shorter than 50 m) events to exploit differences in angular resolutions
between the two event classes.

The sensitivity of the analysis is evaluated for the GRECO oscillations sample by assuming a
spectrum[10] of the form

Φ (�) = Φ0

(
�

�mean/3.15

)2
/
(
4

�
�mean/3.15 + 1

)
. (7)

Simulated background-only measurements are performed on data scrambled in right ascension
processed with the KDE methods described above to identify search windows. Signal simulations
include data scrambled in right ascension and signal events from sources generated randomly
across the sky. Signal flare times are drawn from a uniform distribution covering the event sample.
Simulated flares are produced with a Gaussian time profile with a width of 100 s. The 90%
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Figure 2: Sensitivity (left) and discovery potential (right) for the GRECO oscillation sample using the Dirac
flux in Equation 7 assuming �<40= of 20 GeV and 100 GeV.
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Figure 3: The expected contributions from each atmospheric background component, including neutrinos
and two independent simulations of atmospheric muons (labeled CORSIKA and MuonGun). No fitting of
atmospheric components has been performed. Events with a BDT score below 0.13 are removed, yielding a
sample with 60% atmospheric neutrinos and 40% atmospheric muons.

sensitivity - defined as the median expected 90% upper limit - and 3f discovery potential - the
median flux required for a positive result at 3f significance - of the analysis are shown in Figure 2.

A total of 300 search windows were identified in the unblinded dataset with 267 search
windows containing more than one estimated signal event. After accounting for trials, the final
result is consistent with background fluctuations, with p>0.5.

3. The Realtime GRECO Selection

The merging of two independent boosted decision trees (BDTs) in the GRECO oscillation
sample and reoptimization of several variables can provide significant improvements in effective area
for astrophysical searches. An updated version of the selection has been developed to include these
improvements. An updated version of the GENIE neutrino generator[11], new charge calibrations
in both data and simulation, an updated model of the glacial ice properties, and newly available high
statistics simulation sets of atmospheric muons are used to train a single BDT using a modified set
of the GRECO oscillation variables[6]. The results from the new BDT training, given in Figure 3,
show that the data is well-modeled by atmospheric-weighted simulation.

The new selection, referred to as the GRECO Astronomy sample, provides significantly im-
proved effective areas relative to the GRECO oscillation sample at energies below 100 GeV and
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Figure 4: The effective areas of the new GRECO Astronomy sample for charged-current muon neutrino in-
teractions (left) and charged-current electron neutrino interactions (right). The through-going muon neutrino
gamma-ray followup (GFU) selection[12] and the all-flavor extremely low energy (ELowEn) selection[13]
are shown for comparison.
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Figure 5: Reconstruction performance in the GRECO astronomy sample for simulated charged-current
electron (left) and muon (right) neutrinos as a function of neutrino energy.

is competitive with higher energy through-going track selections up to several TeV, as shown in
Figure 4.

As with the GRECO oscillation selection, the new GRECO Astronomy selection provides a
nearly flavor- and declination-independent significant effective area improvement in the 1-100 GeV
range. The GRECO Astronomy selection also significantly boosts the effective area available for
searches in the southern sky relative to existing through-going track samples, allowing GRECO to
improve southern sky limits up to tens of TeV.

Reconstructions of events in the GRECO astronomy sample are performed using the same
algorithm as in the GRECO oscillation sample. Interactions with outgoing muons yield average
reconstruction angular errors of 5-10◦ above 100 GeV, but events at lower energies tend to be poorly
reconstructed, with average errors up to 40◦. The distribution of angular errors for electron and
muon neutrinos are shown in Figure 5. Angular error estimates f8 are produced for each event
using a dedicated BDT trained to estimate the angular distance between reconstructed direction and
the original neutrino direction.

4. Searches for Novae with GRECO Online

The GRECOAstronomy sample has potential to search not only for untriggered neutrino flares,
as is done in the GRECO oscillations sample analysis described in Section 2, but also to constrain
local low energy neutrino sources. A prime candidate for this type of search is Galactic Novae, the
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Figure 6: Rates of the GRECO astronomy selection over time. Seasonal fluctuations from the atmospheric
backgrounds are visible around the average rate of 4.5 mHz. The times of catalog novae occurring during
the avaible time periods of the GRECO astronomy selection are included.

luminous outbursts that occur when a white dwarf in a binary system rapidly accretes matter from
its companion star, leading to unstable nuclear burning on the surface of the white dwarf. It was
recently discovered that novae, typically identified in optical wavelengths, were often accompanied
by GeV gamma rays [14]. To date, the Large Area Telescope (LAT) aboard NASA’s Fermi satellite,
has detected over one dozen novae. For a recent review of novae, see [15].

The gamma-ray emission from novae was recently found to be strongly correlated in time
with the optical emission, lending evidence for a common origin in shocks [16]. These non-
thermal gamma rays could, in principle, be produced from a variety of either leptonic or hadronic
mechanisms, depending on the composition of the relativistic particles accelerated at the shocks.
While several arguments currently favor the hadronic scenario, neutrinos could hold the key to
distinguishing between the leptonic and hadronic models and could provide valuable information
for understanding the environments of these shocks. However, as novae are believed to have a
maximum acceleration threshold up to only around TeV energies for initial cosmic-ray primaries,
traditional track-based neutrino searches are not sensitive to signals from novae, but the GRECO
astronomy sample can be used to search for these signals[17].

To search for such a signal, we use a similar likelihood as defined in Eq. 3, but the signal and
background PDFs, S8 and B8 , are functions not only of directional observables, but also of the
reconstructed energies of the neutrino candidate events. A total of 16 novae previously identified by
Fermi-LAT (including candidate gamma-emitters from [18]) that are coincident with the GRECO
astronomy livetime, shown in Figure 6, are used as a catalog. As with the analysis described in
Section 2, for large time-windows, the atmospheric backgrounds become overwhelming, and the
search must be limited to shorter timescales. Although some novae are seen to emit for weeks
to months, preliminary studies suggest a maximum allowed integration time of ∼ 10 days for this
analysis.

Working under the assumption that the detected gamma rays from novae are completely
produced from the decay of neutral pions, and neglecting any gamma-ray attenuation, expected
signals can be estimated using the procedure outlined in [19]. Using the best-fit single power law
spectra for each of these novae yield preliminary median 90% sensitivities to individual novae at
the level of about ∼ 101−102 GeV cm−2, when constraining the energy-scaled time-integrated flux,
�23#/3�Δ) at 1 GeV, and when using an analysis window of one day. While the expectation from
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each individual nova is at least one order of magnitude below this, the technique remains sensitive to
nearby or exceptionally bright novae, and it also neglects any gamma-ray attenuation, which would
increase the relative neutrino to gamma-ray flux. Additionally, stacking together the signals from
the entire catalog of novae, or searching for ways to remain sensitive to longer timescales, would
improve the capabilities of this analysis. Both of these improvements are currently underway.
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