94 research outputs found

    A Reconfigurable Outer Modem Platform for Future Communications Systems

    Get PDF
    Future mobile and wireless communications networks require flexible modem architectures with high performance. Efficient utilization of application specific flexibility is key to fulfill these requirements. For high throughput a single processor can not provide the necessary computational power. Hence multi-processor architectures become necessary. This paper presents a multi-processor platform based on a new dynamically reconfigurable application specific instruction set processor (dr-ASIP) for the application domain of channel decoding. Inherently parallel decoding tasks can be mapped onto individual processing nodes. The implied challenging inter-processor communication is efficiently handled by a Network-on-Chip (NoC) such that the throughput of each node is not degraded. The dr-ASIP features Viterbi and Log-MAP decoding for support of convolutional and turbo codes of more than 10 currently specified mobile and wireless standards. Furthermore, its flexibility allows for adaptation to future systems

    Successive Cancellation Automorphism List Decoding of Polar Codes

    Full text link
    The discovery of suitable automorphisms of polar codes gained a lot of attention by applying them in Automorphism Ensemble Decoding (AED) to improve the error-correction performance, especially for short block lengths. This paper introduces Successive Cancellation Automorphism List (SCAL) decoding of polar codes as a novel application of automorphisms in advanced Successive Cancellation List (SCL) decoding. Initialized with L permutations sampled from the automorphism group, a superposition of different noise realizations and path splitting takes place inside the decoder. In this way, the SCAL decoder automatically adapts to the channel conditions and outperforms the error-correction performance of conventional SCL decoding and AED. For a polar code of length 128, SCAL performs near Maximum Likelihood (ML) decoding with L=8, in contrast to M=16 needed decoder cores in AED. Application-Specific Integrated Circuit (ASIC) implementations in a 12 nm technology show that high-throughput, pipelined SCAL decoders outperform AED in terms of energy efficiency and power density, and SCL decoders additionally in area efficiency.Comment: 5 pages, 5 figures, submitted to IEEE for possible publicatio

    Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage

    Get PDF
    Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use metagenomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.info:eu-repo/semantics/publishedVersio

    Altered cortical synaptic lipid signaling leads to intermediate phenotypes of mental disorders

    Get PDF
    Excitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects. Furthermore, we tested therapeutic options targeting ATX in a related mouse line. Using EEG combined with TMS in an instructed fear paradigm, neuropsychological analysis and an fMRI based episodic memory task, we found intermediate phenotypes of mental disorders in human carriers of a loss-of-function single nucleotide polymorphism of PRG-1 (PRG-1R345T/WT). Prg-1R346T/WT animals phenocopied human carriers showing increased anxiety, a depressive phenotype and lower stress resilience. Network analysis revealed that coherence and phase-amplitude coupling were altered by PRG-1 deficiency in memory related circuits in humans and mice alike. Brain oscillation phenotypes were restored by inhibtion of ATX in Prg-1 deficient mice indicating an interventional potential for mental disorders

    Estimating fine-root production by tree species and understorey functional groups in two contrasting peatland forests

    Get PDF
    Background and aims Estimation of root-mediated carbon fluxes in forested peatlands is needed for understanding ecosystem functioning and supporting greenhouse gas inventories. Here, we aim to determine the optimal methodology for utilizing ingrowth cores in estimating annual fine-root production (FRP) and its vertical distribution in trees, shrubs and herbs. Methods We used 3-year data obtained with modified ingrowth core method and tested two calculation methods: 'ingrowth-dividing' and `ingrowth-subtracting'. Results The ingrowth-dividing method combined with a 2-year incubation of ingrowth cores can be used for the 'best estimate' of FRP. The FRP in the nutrient-rich fen forest (561 g m(-2)) was more than twice that in the nutrient-poor bog forest (244 g m(-2)). Most FRP occurred in the top 20-cm layer (76-82 %). Tree FRP accounted for 71 % of total FRP in the bog and 94 % in the fen forests, respectively, following the aboveground vegetation patterns; however, in fen forest the proportions of spruce and birch in FRP were higher than their proportions in stand basal area. Conclusions Our methodology may be used to study peatland FRP patterns more widely and will reduce the volume of labour-intensive work, but will benefit from verification with other methods, as is the case in all in situ FRP studies.Peer reviewe

    Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage

    Get PDF
    Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use meta-genomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.Peer reviewe

    Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension

    Get PDF
    High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to ~192,000 individuals, and used ~155,063 samples for independent replication. We identified 31 novel blood pressure or hypertension associated genetic regions in the general population, including three rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5mmHg/allele) than common variants. Multiple rare, nonsense and missense variant associations were found in A2ML1 and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention

    Terrestrial Very-Long-Baseline Atom Interferometry:Workshop Summary

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions
    • 

    corecore