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Abstract. Current and future communications systems have to provide a large
degree of flexibility e.g. to provide multi-service ability, seamless roaming,soft-
infrastructure upgrading, user-defined propriety, simultaneous multi-standard op-
eration, and different quality of service.
This paper presents a multi-processor platform for the application domainof
channel decoding. Inherently parallel decoding tasks can be mappedonto individ-
ual processing nodes. The implied challenging inter-processor communication is
efficiently handled by a Network-on-Chip (NoC) such that the throughput of each
node is not degraded. Each processing node features Viterbi and Log-MAP de-
coding for support of convolutional and turbo codes of various currently specified
mobile and wireless standards. Furthermore, its flexibility allows for adaptation
to future systems.

Keywords. Domain-specific Reconfigurable Platform, Channel Coding, Outer-
Modem

1 Introduction

Next generation mobile communication networks, beyond 3G (B3G), feature new ser-
vices, especially multimedia applications, high data rates, and multi-access interop-
erability. The International Telecommunication Union expects that new radio access
technologies will be integrated with already existing wireless and mobile networks like
UMTS, WLAN, and DVB into a heterogeneous network. Seamless services with soft
handover must be guarantied. Modem architectures must adapt to these diverse require-
ments and support different technologies and standards at the same time.Thus flexibility
becomes a dominant aspect for future modems.

The focus of this paper is put onchannel decoding in mobile and wireless com-
munications systems. Here convolutional codes (CC) and concatenated convolutional
codes, also known as turbo codes (TC), are established techniques. Table1 shows cod-
ing schemes used in various existing standards. Turbo codeshave an outstanding for-
ward error correction capability. They consist of concatenated component codes that
work on the same block of information bits, separated by an interleaver. The compo-
nent codes are recursive convolutional codes which are decoded individually. Key to
the performance of turbo codes is the iterative exchange of interleaved information
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between the component decoders. For an introduction to turbo codes see [1]. Convolu-
tional codes are decoded by the Viterbi algorithm (VA) [2] or the Maximum A posteriori
Probability (MAP) algorithm [3]. The VA generates hard decision output, whereas the
MAP is used if soft decision output is required, as in turbo codes.

The flexibility challenge can only be met by programmable or reconfigurable archi-
tectures. ASIC implementations are not suitable for adaptation of changes as required
in B3G systems. FPGAs feature bit level flexibility, but the programming model is
complex. A simple programming model and instruction level flexibility is provided by
processors. Hence, efficient implementations of channel decoders on programmable ar-
chitectures are of great importance to efficiently support the various existing or even
emerging standards. Throughput on single processor architectures, however, is limited.
Thus for high throughput applications the parallelism has to be increased on various
levels, e.g. on instruction and multi-processor level.

The XiRisc [4] provides a RISC architecture enhanced by a reconfigurable,FPGA
alike array that is tightly coupled with the RISC pipeline. However, the restrictions
to the RISC pipeline structure, the load-store architecture, and the narrow bandwidth
between the register file and the reconfigurable array limit the performance.

Efficient utilization of application specific parallelism and flexibility is key to pow-
erful, efficient, and flexible architectures. High performance combined with the advan-
tages of processors, namely instruction level flexibility and simple programming mod-
els, can be achieved by application specific instruction setprocessors (ASIP). In [5] an
ASIP based on the Tensilica XTENSA platform targeting the channel coding domain
was presented. It is based on a fixed RISC pipeline extended byapplication specific in-
structions. This platform is limited to a load-store RISC architecture with four pipeline
stages.

Total freedom in pipeline and memory architecture design gives room for further
improvement. Moreover, it allows to add application specific run time reconfigurabil-
ity to the ASIP approach: the flexibility requirements of the application domain can be
balanced between instruction level flexibility and reconfigurability, as explained in Sec-
tion 3. An ASIP using this approach was proposed in [6], but it only targets the field
of turbo codes with 8 states or less. Convolutional codes with high constraint lengths,
which have similar computational complexity as turbo codes, and 16-state turbo codes
are not supported.

In multi-processor implementations several independent data blocks can be decoded
on different processors independently, which multiplies the costs (memories, area, and
power consumption) along with the throughput. Latency can not be improved with this
approach. Exploiting the inherent parallelism of the decoding algorithms enables a far
more efficient partitioning of the decoding task: as will be shown later, the block to de-
code can be divided into several sub-blocks. Decoding each sub-block on an individual
processor significantly reduces latency as a critical parameter in many communication
applications, and memory overhead.

Due to the iterative exchange of interleaved data each processor working on the
same data block has to communicate with each other, yieldingonly limited locality.
A communication network has to support the communication demands of the different
applications without degrading the throughput of the overall system.
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Standard Codes Rates States Blocksize Throughput

GSM CC 1/2..1/4 16, 64 33..876 ..12kbps
EDGE CC 1/2..1/3 64 39..870 5..62kbps
UMTS CC 1/2..1/3 256 1..504 ..32kbps

TC 1/3 8 40..5114 ..2Mbps
CDMA2k CC 1/2..1/6 256 1..744 ..38kbps

TC 1/2..1/5 8 378..20736 ..2Mbps
IEEE802.11 CC 3/4..1/264, 256 1..4095 6..54Mbps
IEEE802.16 CC 7/8..1/2 64 1..2040 ..24Mbps

TC 3/4..1/2 8 1..648 ..24Mbps
Inmarsat TC 1/2 16 ..2608 ..64kbps

Table 1.Selection of standards and channel codes

We present a multi-processor platform for channel decodingbased on a dynamically
reconfigurable application specific instruction set processor (dr-ASIP). The platform
is scalable and provides the flexibility to allocate different decoding tasks to differ-
ent processors. Thus it is possible to decode multiple convolutional and turbo codes
in parallel on different hardware resources. The resource allocation can be adapted to
application constraints like data rate or latency.

The dr-ASIP features Viterbi and Log-MAP processing for allpossible binary con-
volutional codes with constraint lengths between 3 and 9, and code rates between 1 and
1/4 and supports convolutional and turbo decoding.

Section2 summarizes the flexibility requirements for the decoder architecture from
the application point of view. The ASIP architecture is presented in Section3, followed
by the extension to a multi-processor platform in Section4. Section5 concludes the
paper.

2 Application Requirements

Thorough investigation of 2G, 3G and upcoming 3.9G/4G mobile and wireless commu-
nication scenarios led to following requirements for a convolutional and turbo decoder
platform (a selection of standards is summarized in Table1):

– combined decoder for VA and Log-MAP decoding
– support of convolutional and turbo decoding
– support of constraint lengthsKc = 3. . .9
– up to four channel values per information bit
– arbitrary but single feedback polynomial
– arbitrary generator polynomials
– high throughput (up to 100 Mbps for turbo applications)
– fast reconfigurability of channel code structure

The platform must be scalable to different scenarios like terminal or base station
implementations.
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3 ASIP design

3.1 General Considerations

Before designing the application specific processor, general architectural choices had to
be made. The Log-MAP algorithm is computationally more expensive than the VA and
will therefore be discussed first.

Various windowing schemes ([7,8]) must be supported. Therefore the recursions are
programmable. This gives flexibility for instance to adjustthe acquisition length to the
code structure and to the communication channel conditions. The different recursions
are processed sequentially on the same hardware, and forward or backward recursion
can be performed first. The soft output is computed in parallel with the second recursion.
One recursion step of turbo code applications is processed in a single cycle for high
throughput support. Therefore it must be possible to read channel values, to process
branch and state metrics in parallel, and to store multiple state metrics or soft output
values, all at the same time. This requires data parallelismwithin the pipeline, and a
customized memory architecture with high memory bandwidth. A maximum ofN = 16
state metrics are computed in parallel. IfN is larger than 16, the state metrics of a single
trellis step have to be computed sequentially.

The channel code structure is at least constant for a whole data block. The over-
head (area, energy, latency) of specifying it with each instruction is too high. On the
other hand it is important to be able to switch within a few clock cycles from one chan-
nel code to another, for instance to support soft handover. Therefore the channel code
configuration is not specified by the instructions but is keptdynamically reconfigurable
within the dr-ASIP.

In case of the VA the path metrics computation and the trace back are performed
sequentially. The path metric computation utilizes the same hardware as the forward
state metric recursion of the Log-MAP algorithm.

3.2 Architecture Overview

Figure1 shows the overall architecture of the dr-ASIP. It consists of the dr-ASIP core,
memories, and an interleaver and deinterleaver unit (IL/DIL) connected to a network
interface. Data is exchanged through the packet based network interface (see Section4).

Several memories (one channel value (CV) memory and two IO memories) can be
accessed by the dr-ASIP core as well as by the network interface. The IO memories
are suited for storage of soft or hard output values, local survivors, and extrinsic infor-
mation. Typically these memories are implemented by synchronous SRAMs. Their size
can be tailored to the application and is only limited by the address space assigned to
the different memories.

In multi-processor turbo decoder applications, the new extrinsic information has to
be distributed to different target processors. This task isperformed by the IL/DIL and
the network interface. The IL/DIL maps the source address ofthe old extrinsic infor-
mation to a target address before the data is sent to the network interface. The interface
itself performs the message distribution. During decodingone IO-MEM, storing the old
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Fig. 1.Overall dr-ASIP architecture

LLRs of the actual iteration, is read by the dr-ASIP core, while the other is filled with
the received new extrinsic information for the next iteration.

The control part of the dr-ASIP core consists of two parts: program control and a
dynamically reconfigurable channel code control. The program control supports two
nested zero overhead loops (ZOL), branches, and limited interrupt services. Pipeline
control is also implemented here. The channel code control specifies the channel code
structure specific parameters. It is look up table (LUT) based and consists of two sets of
LUTs: a working and a shadow configuration. Within a single clock cycle the shadow
configuration can be transfered to the working configurationto support run time recon-
figurability. The channel code control configures for instance the number of channel
values that are read in parallel from the CV memory, and the generator polynomials of
the convolutional code.

The data manipulation part comprises a single data path pipeline, special purpose
registers (SPR), and a state metric memory (SMM). The SMM is single ported and
can store 16 state metric values in parallel. It holds the state metrics generated during
the first recursion until they are consumed by the LLR computation during the second
recursion. For convolutional codes with constraint lengths Kc > 5 the SMM is also
used to store intermediate state metrics both during forward and backward recursion.
The SPRs implement address generation for the memory read and write accesses of the
processor’s pipeline, especially the survivor memory readand write pointer generation
during VA operation.

The data path pipeline consists in total of 11 stages. Its functionality is controlled by
the decoded instruction as well as by the reconfigurable channel code control. A maxi-
mum of 16 state or path metrics are computed in parallel. IfKc < 5 parts of the pipeline
are powered down. IfKc > 5 a load store architecture is implemented: intermediate
state metrics are loaded from the SMM to a pipeline register,processed, and then stored
back to the SMM. A single trellis cycle withN = 256 states can thus be computed in
16 consecutive steps, each step takes 4 clock cycles. The soft-output computation of the



6 T. Vogt, C. Neeb, N. Wehn

Platform Architecture Clock freq. cycles/ Throughput/
(bit*MAP) 5 iter

Processor GP-DSP 200 MHz ≈ 100 ≈ 0.2Mbps
STM ST120 VLIW[ 5]
XTENSA Conf. RISC[5] 133 MHz ≈ 33 ≈ 0.4Mbps

FPGA VitexII-3000[9] 80 MHz ≈ 1 ≈ 8Mbps
Reconf. Proc. XiRisc[4] 100 MHz ≈ 100 ≈ 0.1Mbps

ASIP [6] 335 MHz ≈ 7.5 ≈ 4.4Mbps
ASIP dr-ASIP 400 MHz ≈ 2 ≈ 16Mbps

Table 2. Comparison of different Log-MAP implementations for UMTS turbo code
applications

Log-MAP algorithm is pipelined due to critical path reduction. Due to the possibility of
dynamic reconfiguration of the processor pipeline, any codestructure with 3≤ Kc ≤ 9
and rates between 1 and 1/4 are supported.

3.3 Implementation Results

The dr-ASIP core was implemented with the LISATek tool set, the generated VHDL
model was synthesized with the Synopsys Design Compiler with a high speed 130 nm
standard cell library at 400 MHz under worst case conditions(1.05V, 125C). The total
gate count of the dr-ASIP core without memories is 64450 gateequivalents (GE). The
SMM for a maximum window size of 64 adds another 8967 GE. The data path pipeline
alone accounts for 84.5% of the dr-ASIP core area. Compared to the processors of [5]
and [6] with 104 kGE and 93 kGE for the core’s logic, respectively, the dr-ASIP saves
more than 30% of the area.

The throughput for the Log-MAP algorithm at 400 MHz clock frequency varies
from 0.9 Mbits/s forKc = 9 to 180 Mbits/s forKc ≤ 5, and from 12 Mbits/s to 133
Mbits/s for the VA, respectively. Table2 summarizes Log-MAP decoder implementa-
tions for UMTS turbo code applications on different target platforms. The clock fre-
quencies listed are maximum values. They differ, among other things, because the tar-
get technology is not the same. However, the dr-ASIP outperforms the other processor
implementations even if they all run with the same clock frequency.

4 Application specific multi-processor platform (AP-MPSoC)

As already mentioned, future communication standards willdemand for very high data
rates with constrained latency. Hence, only increasing theinstruction level parallelism
of a single processor core is not sufficient, and we have to move to massively parallel
multi-processor architectures, so-called application specific multi-processor systems-
on-chip (AP-MPSoC). In [10] a flexible multi-processor architecture for parallel turbo
decoding was presented for the first time. Customized RISC cores are augmented with
application specific hardware accelerators to increase computational power. However,
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Fig. 2. Example mapping of multiple decoding tasks on application specific multi-
processor platform (AP-MPSoC)

the flexibility to support multiple coding standards is rather limited and only a subset of
turbo decoding applications is supported at moderate performance.

A simple solution to increase the degree of parallelism is todecode independent
data blocks on different processors independently. However, such a solution does not
decrease the decoding latency. Since latency is a very critical issue such a solution is
infeasible in many cases. Furthermore, due to the limited size of the processors local
IO memory, the support of large block sizes can only be achieved by splitting it into
several sub-blocks. Thus, we decompose the algorithm itself into a set of parallel tasks
running on a set of communicating dr-ASIP cores forming processing clusters. We ex-
ploit windowing to break up a complete block of lengthL into n smaller sub-blocks of
lengthB, where each sub-block is mapped onto one of then cores in the platform.

The arising need for data communication in parallel architectures is efficiently re-
alized by a Network-on-Chip [11] [12]. It allows to share physical bandwidth among
different classes of data like IO channel data or concurrentinterleaving data during
decoding. The dimensioning of an application tailored network architecture is a crucial
step in the MPSoC design which otherwise might lead to poor performance of the entire
platform.

4.1 Architecture Template

Figure2 shows the arrangement of the dr-ASIP cores integrated by a packet switched
Network-on-Chip (NoC). It allows the dynamic mapping of independent decoding tasks
onto a single dr-ASIP processor or onto multiple processorsgrouped in a cluster. For ap-
plications demanding for very high throughput with tight latency constraints, all proces-
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sors can be assigned to a single decoding task. An example mapping of two independent
turbo decoders and one convolutional decoder is depicted inFigure2. The platform of-
fers a high flexibility to adapt to situations of changing decoding requirements and
workloads.

Each of the dr-ASIP cores is directly attached to a networkrouter (R) which imple-
ments the required communication services. The routers areinterconnected by bidirec-
tional point-to-point channels forming a 2D mesh topology.For performance reasons,
we provide multipleIO interfaces(IF) to the environment which are directly connected
to the boundary routers of the network. They allow the adaption of different communi-
cation protocols like OCP or Amba AXI to the optimized internal network protocol.

Typically, IO data form long data streams because entire blocks must be completely
loaded and stored by a processor before decoding. This is in contrast to the exchange of
interleaving data where very small chunks of data must be transferred at high data rates.
We pay attention to this by the use of two types of network packets.The first one serves
for interleaving purpose and consists of a single flit only containing all header infor-
mation and a small data payload. A flit (flow control digit) represents the atomic data
unit of transfer in our architecture and so determines the width of a physical channel.
For the remaining data, a variable size packet format is usedwhich consists of at least
three flits. The first two are header flits specifying, in addition to the target processor
and a local address information, the packetlength in terms of flits and a packet clas-
sifier for processor internal purpose. The payload can include up to four input channel
or soft output values per flit, program instructions, configuration data, state metrics, or
interleaver information.

We use the concept ofvirtual networks[13] to control the allocation of network
bandwidth separately for the two traffic classes. This is reflected in the data path of
the routers where packets located in two separate data queues form independent virtual
channels. These virtual channels are then multiplexed overa common physical channel
by means of a crossbar switch.

4.2 Network Traffic Estimation

To quantify the resulting network traffic, we analyzed the different processing and com-
munication phases for the parallel turbo and convolutionaldecoding. The amount of
data for program code and configuration of the code parameters is assumed to be small
compared to the IO and interleaving data if reconfiguration occurs rarely and was there-
fore neglected. Furthermore, it can be shown that interleaving generates a multiple of
data compared to the IO data rates.

To ensure that a 2D mesh network offers sufficient bandwidth for all configurations,
we model it as a directed graphI(R,C), where a vertexr i ∈ R represents a router and
a directed weighted edgeci, j a (physical) communication channel between its incident
routersr i andr j . An associated edge weightτ(ci, j) = τi, j represents the average channel
traffic measured in flits per clock cycle 0≤ τi, j ≤ 1. Figure3 illustrates the derivation
of the network traffic. Every communication between any two nodesr i , r j is mapped to
at least one routing path according to the employed routing algorithm. This increases
the average trafficτi, j on all channels belonging to the routing path. Consequently,
network traffic depends on the choice of the topology, the routing algorithm and the
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Fig. 3.Derivation of network traffic for interleaving inside a turbo decoder cluster com-
prisingnx ·ny dr-ASIP cores

communication pattern of the processors. In the case of interleaving, a distributed block
permutation is performed where all nodes must communicate with all other nodes with
equal probability. This reflects the behavior of good interleavers where data is scram-
bled randomly inside the data block. From this point of view,a random uniform model
adequately models the communication pattern of the decodercores for interleaving.
Hence, all packets have equal probability 1/n to be sent to a specific target processor.

To estimate network traffic caused by interleaving, we referto the network’sbisec-
tion bandwidth. It defines the aggregate bandwidth of a minimum cut which divides the
network into two equal node sets and, accordingly, thebisection width bas the number
of channels that have to be cut. Due to the regular construction and symmetry of the 2D
mesh, the bisection widthb can easily be derived asb = 2 ·min{nx,ny}, with n = nxny,
andnx andny number of nodes in x- and y-dimension, respectively. It is always orthog-
onal to the dimension containing most of the nodes. Due to theuniform communication
pattern,nρIL/2 interleaver packets have to cross this bisection during each cycle in
average. The bisection channels carry the maximum of the interleaver traffic:

τturbo
IL,max =

nρturbo
IL

2·2min{nx,ny}
= 0.11max{nx,ny} (1)

τ = τturbo
IL,max+ τIN + τOUT ≤ 1 (2)

with ρturbo
IL ≥ 0.45 for dr-ASIP turbo decoder implementations.

The above equations restrict the possible shapes of the turbo processing clusters:
less than nine cores may be grouped along any dimension if no IO traffic arises dur-
ing interleaving crossing the cluster. This is always true if all cores are configured to
process only one turbo code in parallel where the IO phase andinterleaving never oc-
cur simultaneously. For a quadratic arrangement of theN = 16 cores in a 2D mesh no
configuration exists that violates the above requirement.
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5 Conclusion

Application specific flexibility is mandatory to meet the flexibility and performance re-
quirements of B3G communications systems. It can be achieved by application specific
instruction set processors with specialized pipeline topology and dedicated commu-
nication and memory infrastructure. Dynamic reconfigurability is necessary to switch
during run time between different coding schemes. In this paper we presented a dynam-
ically reconfigurable ASIP for the application domain of channel decoding (dr-ASIP).
It features Viterbi and Log-MAP processing for binary convolutional codes with con-
straint lengths between 3 and 9, code rates between 1 and 1/4,and arbitrary feedback
and generator polynomials. Convolutional and turbo decoding for more than 10 cur-
rently specified mobile and wireless standards is supported.

For high-throughput decoding, we proposed a reconfigurableapplication specific
multi-processor platform (AP-MPSoC) as a natural transition to parallel decoding. Here,
multiple dr-ASIP cores can be configured to form parallel processing clusters enabling
low latency decoding. As the inter-processor communication becomes the bottleneck
for high degrees of parallelization, we presented a Network-on-Chip approach to ef-
ficiently interconnect the dr-ASIP cores. A traffic analysisshowed that the overall
processing performance in a 4x4 2D mesh topology is not degraded by the network’s
limited communication bandwidth.
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