113 research outputs found

    Demonstration of fine pitch FCOB (Flip Chip on Board) assembly based on solder bumps at Fermilab

    Full text link
    Bump bonding is a superior assembly alternative compared to conventional wire bond techniques. It offers a highly reliable connection with greatly reduced parasitic properties. The Flip Chip on Board (FCOB) procedure is an especially attractive packaging method for applications requiring a large number of connections at moderate pitch. This paper reports on the successful demonstration of FCOB assembly based on solder bumps down to 250um pitch using a SUESS MA8 flip chip bonder at Fermilab. The assembly procedure will be described, microscopic cross sections of the connections are shown, and first measurements on the contact resistance are presented.Comment: 4 pages, 8 figure

    Status of a DEPFET pixel system for the ILC vertex detector

    Get PDF
    We have developed a prototype system for the ILC vertex detector based on DEPFET pixels. The system operates a 128x64 matrix (with ~35x25 square micron large pixels) and uses two dedicated microchips, the SWITCHER II chip for matrix steering and the CURO II chip for readout. The system development has been driven by the final ILC requirements which above all demand a detector thinned to 50 micron and a row wise read out with line rates of 20MHz and more. The targeted noise performance for the DEPFET technology is in the range of ENC=100 e-. The functionality of the system has been demonstrated using different radioactive sources in an energy range from 6 to 40keV. In recent test beam experiments using 6GeV electrons, a signal-to-noise ratio of S/N~120 has been achieved with present sensors being 450 micron thick. For improved DEPFET systems using 50 micron thin sensors in future, a signal-to-noise of 40 is expected.Comment: Invited poster at the International Symposium on the Development of Detectors for Particle, AstroParticle and Synchrotron Radiation Experiments, Stanford CA (SNIC06) 6 pages, 12 eps figure

    Readout Concepts for DEPFET Pixel Arrays

    Get PDF
    Field effect transistors embedded into a depleted silicon bulk (DEPFETs) can be used as the first amplifying element for the detection of small signal charges deposited in the bulk by ionizing particles, X-ray photons or visible light. Very good noise performance at room temperature due to the low capacitance of the collecting electrode has been demonstrated. Regular two dimensional arrangements of DEPFETs can be read out by turning on individual rows and reading currents or voltages in the columns. Such arrangements allow the fast, low power readout of larger arrays with the possibility of random access to selected pixels. In this paper, different readout concepts are discussed as they are required for arrays with incomplete or complete clear and for readout at the source or the drain. Examples of VLSI chips for the steering of the gate and clear rows and for reading out the columns are presented.Comment: 8 pages, 9 figures, submitted to Nucl. Instr. and Methods as proceedings of the 9th European Symposium on Semiconductor Detectors, Elmau, June 23-27, 200

    Interactive medical image segmentation - towards integrating human guidance and deep learning

    Get PDF
    Medical image segmentation is an essential step in many clinical workflows involving diagnostics and patient treatment planning. Deep learning has advanced the field of medical image segmentation, particularly with respect to automating contouring. However, some anatomical structures, such as tumours, are challenging for fully automated methods. When automatic methods fail, manual contouring is required. In such cases, semi-automatic tools can support clinicians in contouring tasks. The objective of this thesis was to leverage clinicians’ expert knowledge when performing segmentation tasks, allowing for interactions along the segmentation workflow and improving deep learning predictions. In this thesis, a deep learning approach is proposed that produces a 3D segmentation of a structure of interest based on a user-provided input. If trained on a diverse set of structures, state-of-the-art performance was achieved for structures included in the training set. More importantly, the model was also able to generalize and make predictions for unseen structures that were not represented in the training set. Various avenues to guide user interaction and leverage multiple user inputs more effectively were also investigated. These further improved the segmentation performance and demonstrated the ability to accurately segment a broad range of anatomical structures. An evaluation by clinicians demonstrated that time spent contouring was reduced when using the contextual deep learning tool as compared to conventional contouring tools. This evaluation also revealed that the majority of contouring time is observation time, which is only indirectly affected by the segmentation approach. This suggests, that user interface design and guiding the user’s attention to critical areas can have a large impact on time taken on the contouring task. Overall, this thesis proposes an interactive deep learning segmentation method, demonstrates its clinical impact, and highlights the potential synergies between clinicians and artificial intelligence

    2D Detectors for Particle Physics and for Imaging Applications

    Full text link
    The demands on detectors for particle detection as well as for medical and astronomical X-ray imaging are continuously pushing the development of novel pixel detectors. The state of the art in pixel detector technology to date are hybrid pixel detectors in which sensor and read-out integrated circuits are processed on different substrates and connected via high density interconnect structures. While these detectors are technologically mastered such that large scale particle detectors can be and are being built, the demands for improved performance for the next generation particle detectors ask for the development of monolithic or semi-monolithic approaches. Given the fact that the demands for medical imaging are different in some key aspects, developments for these applications, which started as particle physics spin-off, are becomming rather independent. New approaches are leading to novel signal processing concepts and interconnect technologies to satisfy the need for very high dynamic range and large area detectors. The present state in hybrid and (semi-)monolithic pixel detector development and their different approaches for particle physics and imaging application is reviewed

    Die prognostische Relevanz des Nachweises disseminierter Tumorzellen im Knochenmark und in Lymphknoten Level I nodal-negativer Mammakarzinompatientinnen

    Get PDF
    Fragestellung: Der Nachweis von CK+-KMM ist ein unabhängiger Prognosefaktor, der das primär auf den LK_Status ausgerichtete, aktuelle Tumorstaging beeinflussen könnte. In der vorliegenden Studie wurde untersucht, ob CK+-KMM und LKM parallel nachweisbar und jeweils prognostisch Relevant sind. Methode: 300 KM-Aspirate und 1590 axilläre Level I LK von 150 nodal-negativer Patientinnen wurden mit monoklonalen anti-CK Antikörpern (A45-B/B3 und NCL-5D3) prospektiv analysiert und mit etablierten Prognosefaktoren verglichen. Die mediane Beobachtungszeit betrug 39 Monate Ergebnisse: CK+-KMM fanden sich bei 44/150 (29%)und CK+-LKM bei 13/150 (9%) Patientinnen. ein CK+-Befund korrelierte nicht mit den etablierten Prognosefaktoren. Der Nachweis von CK+-KMM war nicht mit locoregionären Rezidiven aber mit Fernmetastasierung und tumorabhängigen Tod assoziiert. Der immunzytochemische LKM-Nachweis hatte keine prognostische Bedeutung. In der multiarianten Analyse blieb die CK-Positivität des KM ein unabhängiger Prognosefaktor mit einer Hazard-Ratio von 6,1 für ein verkürztes Gesamtüberleben. Schlussfolgerung: Hämatogene, nicht jedoch lymphogene Mikrometastasierung scheint ein unabhängiger Prognosefaktor für nodal-negative Patientinnen zu sein. Dies könnte als Stratifizierungskriterium in adjuvanten Therapiestudien eingesetzt werden und zukünftige chirurgische Strategien beeinflussen

    Die prognostische Relevanz des Nachweises disseminierter Tumorzellen im Knochenmark und in Lymphknoten Level I nodal-negativer Mammakarzinompatientinnen

    Get PDF
    Fragestellung: Der Nachweis von CK+-KMM ist ein unabhängiger Prognosefaktor, der das primär auf den LK_Status ausgerichtete, aktuelle Tumorstaging beeinflussen könnte. In der vorliegenden Studie wurde untersucht, ob CK+-KMM und LKM parallel nachweisbar und jeweils prognostisch Relevant sind. Methode: 300 KM-Aspirate und 1590 axilläre Level I LK von 150 nodal-negativer Patientinnen wurden mit monoklonalen anti-CK Antikörpern (A45-B/B3 und NCL-5D3) prospektiv analysiert und mit etablierten Prognosefaktoren verglichen. Die mediane Beobachtungszeit betrug 39 Monate Ergebnisse: CK+-KMM fanden sich bei 44/150 (29%)und CK+-LKM bei 13/150 (9%) Patientinnen. ein CK+-Befund korrelierte nicht mit den etablierten Prognosefaktoren. Der Nachweis von CK+-KMM war nicht mit locoregionären Rezidiven aber mit Fernmetastasierung und tumorabhängigen Tod assoziiert. Der immunzytochemische LKM-Nachweis hatte keine prognostische Bedeutung. In der multiarianten Analyse blieb die CK-Positivität des KM ein unabhängiger Prognosefaktor mit einer Hazard-Ratio von 6,1 für ein verkürztes Gesamtüberleben. Schlussfolgerung: Hämatogene, nicht jedoch lymphogene Mikrometastasierung scheint ein unabhängiger Prognosefaktor für nodal-negative Patientinnen zu sein. Dies könnte als Stratifizierungskriterium in adjuvanten Therapiestudien eingesetzt werden und zukünftige chirurgische Strategien beeinflussen
    corecore