164 research outputs found

    Synthesis of coumarins by ring-closing metathesis

    Get PDF
    Investigations into olefin ring-closing metathesis (RCM) have led to a general method for the synthesis of coumarins. Catalysts with higher activity, such as the second-generation ruthenium catalyst, promote the intramolecular reaction between two-electron deficient olefins. This method allows for convenient access to a variety of coumarins substituted at both the 3- and 4-positions, as well as a tetrasubstituted example

    Gold-Catalyzed Intramolecular Aminoarylation of Alkenes: C-C Bond Formation through Bimolecular Reductive Elimination

    Get PDF
    Gold-ilocks and the 3 mol % catalyst: Bimetallic gold bromides allow the room temperature aminoarylation of unactivated terminal olefins with aryl boronic acids using Selectfluor as an oxidant. A catalytic cycle involving gold(I)/gold(III) and a bimolecular reductive elimination for the key CC bond-forming step is proposed. dppm= bis(diphenylphosphanyl)methane

    Gold(I)-Catalyzed Propargyl Claisen Rearrangement

    Full text link

    Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    Get PDF
    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We also demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%. biofuels | lubricants | life cycle assessment | methyl ketones | greenhouse gases C ountries around the world are enacting legislation to curb greenhouse gas (GHG) emissions. Strategies for decarbonizing road transportation include an array of options from improving engine efficiency and blending bioethanol/biodiesel with gasoline/diesel to using plug-in electric vehicles (1-3). Aviation fuels pose a unique problem because stringent specifications require oxygen-free compounds, limiting the options available (4). Biofuel solutions such as farnesane have been proposed; however, these offer only modest GHG reduction benefits (SI Appendix) and the wide boiling range requirement for jet fuels sets a limit on the amount of single-component renewable fuels that may be blended. At the other end of the spectrum are automotive lubricant base oils where a narrow range of compounds is highly desirable. Poly-α-olefins (PAOs) containing 30 carbon atoms obtained from oligomerization of fossil-derived 1-decene are considered as the benchmark of superior performance for crankcase oils and have a high demand (5). Importantly, the GHG footprint associated with PAO base oils can be higher on a per-mass basis than petroleum-derived fuels if even a fraction of the lubricant is repurposed as fuel at its end of life (6). The goal of our work was to develop a strategy for the flexible production of jet fuels and lubricant base oils in a Brazilian sugarcane refinery designed to achieve a meaningful reduction in life-cycle GHG emissions. Our approach involves conversion of sugars in sugarcane-derived sucrose and hemicellulose to ketones using a combination of chemical and biocatalytic processes. For example, 2-butanone, can be obtained by the dehydration of fermentation-derived 2,3-butanediol (7, 8) or via chemical/biochemical (9, 10) decarboxylation of levulinic acid (11). The fermentation of various biomass-derived sugars using Clostridia strains produces a mixture of acetone, butanol, and ethanol (ABE), which can be used to synthesize a mixture of monoalkylated/dialkylated ketones (12), specifically 2-pentanone and 2-heptanone. Additional synthons may be produced from bioalcohol-derived olefins (13) or biomass-derived furanic platform molecules, such as 2,5-dimethylfuran and 2-methylfuran, via hydrogenolysis to produce 2-hexanone and 2-pentanone, respectively, with as high as 98% selectivity Results and Discussion We begin by identifying heterogeneous catalysts and appropriate reaction conditions for the self-condensation of ketones (1) to produce dimer/trimer condensates 2-4 in high overall yield Significance The development of renewable liquid fuels and bioproducts is critical to reducing global reliance on petroleum and mitigating climate change, particularly for applications where few lowcarbon alternatives exist. We combine chemical catalysis with life-cycle greenhouse gas (GHG) modeling to create a new platform for producing biobased aviation fuel and automotive lubricant base oils. The recyclable catalysts we developed are capable of converting sugar and biomass-derived alkyl methyl ketones into cyclic enones via condensation reactions. These products can subsequently be hydrodeoxygenated to create a new class of aviation fuel and lubricant candidates with superior cold flow properties, density, and viscosity that substantially reduce GHG emissions relative to conventional petroleum

    Best practice data standards for discrete chemical oceanographic observations

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jiang, L.-Q., Pierrot, D., Wanninkhof, R., Feely, R. A., Tilbrook, B., Alin, S., Barbero, L., Byrne, R. H., Carter, B. R., Dickson, A. G., Gattuso, J.-P., Greeley, D., Hoppema, M., Humphreys, M. P., Karstensen, J., Lange, N., Lauvset, S. K., Lewis, E. R., Olsen, A., Pérez, F. F., Sabine, C., Sharp, J. D., Tanhua, T., Trull, T. W., Velo, A., Allegra, A. J., Barker, P., Burger, E., Cai, W-J., Chen, C-T. A., Cross, J., Garcia, H., Hernandez-Ayon J. M., Hu, X., Kozyr, A., Langdon, C., Lee., K, Salisbury, J., Wang, Z. A., & Xue, L. Best practice data standards for discrete chemical oceanographic observations. Frontiers in Marine Science, 8, (2022): 705638, https://doi.org/10.3389/fmars.2021.705638.Effective data management plays a key role in oceanographic research as cruise-based data, collected from different laboratories and expeditions, are commonly compiled to investigate regional to global oceanographic processes. Here we describe new and updated best practice data standards for discrete chemical oceanographic observations, specifically those dealing with column header abbreviations, quality control flags, missing value indicators, and standardized calculation of certain properties. These data standards have been developed with the goals of improving the current practices of the scientific community and promoting their international usage. These guidelines are intended to standardize data files for data sharing and submission into permanent archives. They will facilitate future quality control and synthesis efforts and lead to better data interpretation. In turn, this will promote research in ocean biogeochemistry, such as studies of carbon cycling and ocean acidification, on regional to global scales. These best practice standards are not mandatory. Agencies, institutes, universities, or research vessels can continue using different data standards if it is important for them to maintain historical consistency. However, it is hoped that they will be adopted as widely as possible to facilitate consistency and to achieve the goals stated above.Funding for L-QJ and AK was from NOAA Ocean Acidification Program (OAP, Project ID: 21047) and NOAA National Centers for Environmental Information (NCEI) through NOAA grant NA19NES4320002 [Cooperative Institute for Satellite Earth System Studies (CISESS)] at the University of Maryland/ESSIC. BT was in part supported by the Australia’s Integrated Marine Observing System (IMOS), enabled through the National Collaborative Research Infrastructure Strategy (NCRIS). AD was supported in part by the United States National Science Foundation. AV and FP were supported by BOCATS2 Project (PID2019-104279GB-C21/AEI/10.13039/501100011033) funded by the Spanish Research Agency and contributing to WATER:iOS CSIC interdisciplinary thematic platform. MH was partly funded by the European Union’s Horizon 2020 Research and Innovation Program under grant agreement N°821001 (SO-CHIC)

    Variability and Trends in Physical and Biogeochemical Parameters of the Mediterranean Sea during a Cruise with RV MARIA S. MERIAN in March 2018

    Get PDF
    The last few decades have seen dramatic changes in the hydrography and biogeochemistry of the Mediterranean Sea. The complex bathymetry and highly variable spatial and temporal scales of atmospheric forcing, convective and ventilation processes contribute to generate complex and unsteady circulation patterns and significant variability in biogeochemical systems. Part of the variability of this system can be influenced by anthropogenic contributions. Consequently, it is necessary to document details and to understand trends in place to better relate the observed processes and to possibly predict the consequences of these changes. In this context we report data from an oceanographic cruise in the Mediterranean Sea on the German research vessel Maria S. Merian (MSM72) in March 2018. The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake and to further assess the hydrographical situation after the major climatological shifts in the eastern and western part of the basin, known as the Eastern and Western Mediterranean Transients. During the cruise, multidisciplinary measurements were conducted on a predominantly zonal section throughout the Mediterranean Sea, contributing to the Med-SHIP and GO-SHIP long-term repeat cruise section that is conducted at regular intervals in the Mediterranean Sea to observe changes and impacts on physical and biogeochemical variables. The data can be accessed at https://doi.org/10.1594/PANGAEA.905902 (Hainbucher et al., 2019), https://doi.org/10.1594/PANGAEA.913512 (Hainbucher, 2020a) https://doi.org/10.1594/PANGAEA.913608, (Hainbucher, 2020b) https://doi.org/10.1594/PANGAEA.913505, (Hainbucher, 2020c) https://doi.org/10.1594/PANGAEA.905887 (Tanhua et al., 2019) and https://doi.org/10.25921/z7en-hn85 (Tanhua et al, 2020)

    Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research

    Get PDF
    This paper is the outcome of a workshop held in Rome in November 2011 on the occasion of the 25th anniversary of the POEM (Physical Oceanography of the Eastern Mediterranean) program. In the workshop discussions, a number of unresolved issues were identified for the physical and biogeochemical properties of the Mediterranean Sea as a whole, i.e., comprising the Western and Eastern sub-basins. Over the successive two years, the related ideas were discussed among the group of scientists who participated in the workshop and who have contributed to the writing of this paper. Three major topics were identified, each of them being the object of a section divided into a number of different sub-sections, each addressing a specific physical, chemical or biological issue: 1. Assessment of basin-wide physical/biochemical properties, of their variability and interactions. 2. Relative importance of external forcing functions (wind stress, heat/moisture fluxes, forcing through straits) vs. internal variability. 3. Shelf/deep sea interactions and exchanges of physical/biogeochemical properties and how they affect the sub-basin circulation and property distribution. Furthermore, a number of unresolved scientific/methodological issues were also identified and are reported in each sub-section after a short discussion of the present knowledge. They represent the collegial consensus of the scientists contributing to the paper. Naturally, the unresolved issues presented here constitute the choice of the authors and therefore they may not be exhaustive and/or complete. The overall goal is to stimulate a broader interdisciplinary discussion among the scientists of the Mediterranean oceanographic community, leading to enhanced collaborative efforts and exciting future discoveries

    Group mindfulness based cognitive therapy vs group support for self-injury among young people: Study protocol for a randomised controlled trial

    Get PDF
    Background: Non-suicidal self-injury (NSSI) is a transdiagnostic behaviour that can be difficult to treat; to date no evidence based treatment for NSSI exists. Mindfulness Based Cognitive Therapy (MBCT) specifically targets the mechanisms thought to initiate and maintain NSSI, and thus appears a viable treatment option. The aims of the current study are to test the ability of MBCT to reduce the frequency and medical severity of NSSI, and explore the mechanisms by which MBCT exerts its effect. Methods/Design: We will conduct a parallel group randomised controlled trial of Mindfulness Based Cognitive Therapy (MBCT) versus Supportive Therapy (ST) in young people aged 18-25 years. Computerised block randomisation will be used to allocate participants to groups. All participants will meet the proposed DSM-5 criteria for NSSI (i.e. five episodes in the last twelve months). Participants will be excluded if they: 1) are currently receiving psychological treatment, 2) have attempted suicide in the previous 12 months, 3) exhibit acute psychosis, 4) have a diagnosis of borderline personality disorder, or 5) have prior experience of MBCT. Our primary outcome is the frequency and medical severity of NSSI. As secondary outcomes we will assess changes in rumination, mindfulness, emotion regulation, distress tolerance, stress, and attentional bias, and test these as mechanisms of change. Discussion: This is the first randomised controlled trial to test the efficacy of MBCT in reducing NSSI. Evidence of the efficacy of MBCT for self-injury will allow provision of a brief intervention for self-injury that can be implemented as a stand-alone treatment or integrated with existing treatments for psychiatric disorders

    The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP): A platform for integrated multidisciplinary ocean science

    Get PDF
    The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP) provides a globally coordinated network and oversight of 55 sustained decadal repeat hydrographic reference lines. GO-SHIP is part of the global ocean/climate observing systems (GOOS/GCOS) for study of physical oceanography, the ocean carbon, oxygen and nutrient cycles, and marine biogeochemistry. GO-SHIP enables assessment of the ocean sequestration of heat and carbon, changing ocean circulation and ventilation patterns, and their effects on ocean health and Earth’s climate. Rapid quality control and open data release along with incorporation of the GO-SHIP effort in the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) in situ Observing Programs Support Center (JCOMMOPS) have increased the profile of, and participation in, the program and led to increased data use for a range of efforts. In addition to scientific discovery, GO-SHIP provides climate quality observations for ongoing calibration of measurements from existing and new autonomous platforms. This includes biogeochemical observations for the nascent array of biogeochemical (BGC)-Argo floats; temperature and salinity for Deep Argo; and salinity for the core Argo array. GO-SHIP provides the relevant suite of global, full depth, high quality observations and co-located deployment opportunities that, for the foreseeable future, remain crucial to maintenance and evolution of Argo’s unique contribution to climate science. The evolution of GO-SHIP from a program primarily focused on physical climate to increased emphasis on ocean health and sustainability has put an emphasis on the addition of essential ocean variables for biology and ecosystems in the program measurement suite. In conjunction with novel automated measurement systems, ocean color, particulate matter, and phytoplankton enumeration are being explored as GO-SHIP variables. The addition of biological and ecosystem measurements will enable GO-SHIP to determine trends and variability in these key indicators of ocean health. The active and adaptive community has sustained the network, quality and relevance of the global repeat hydrography effort through societally important scientific results, increased exposure, and interoperability with new efforts and opportunities within the community. Here we provide key recommendations for the continuation and growth of GO-SHIP in the next decade

    Global Surface Ocean Acidification Indicators From 1750 to 2100

    Get PDF
    Accurately predicting future ocean acidification (OA) conditions is crucial for advancing OA research at regional and global scales, and guiding society's mitigation and adaptation efforts. This study presents a new model-data fusion product covering 10 global surface OA indicators based on 14 Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6), along with three recent observational ocean carbon data products. The indicators include fugacity of carbon dioxide, pH on total scale, total hydrogen ion content, free hydrogen ion content, carbonate ion content, aragonite saturation state, calcite saturation state, Revelle Factor, total dissolved inorganic carbon content, and total alkalinity content. The evolution of these OA indicators is presented on a global surface ocean 1° × 1° grid as decadal averages every 10 years from preindustrial conditions (1750), through historical conditions (1850–2010), and to five future Shared Socioeconomic Pathways (2020–2100): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. These OA trajectories represent an improvement over previous OA data products with respect to data quantity, spatial and temporal coverage, diversity of the underlying data and model simulations, and the provided SSPs. The generated data product offers a state-of-the-art research and management tool for the 21st century under the combined stressors of global climate change and ocean acidification. The gridded data product is available in NetCDF at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0259391.html, and global maps of these indicators are available in jpeg at: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/synthesis/surface-oa-indicators.html
    corecore