33 research outputs found

    Comparison of climatic trends and variability among glacierized environments in the Western Himalayas

    Get PDF
    The climate and hydrology of the Western Himalayas is complex and a function of snow and glacier melt, land use, topography, and Indian summer and winter monsoon dynamics. Improving our knowledge about these processes is important from societal and agricultural points of view. In this study, an observational analysis is carried out to assess the changing climatic trends and the associated interannual variability in winter temperature and precipitation at three glacierized regions of Western Himalayas having distinctly different sub-regional characteristics. In situ observations of 23 years (1985–2007) are used. These observations are passed through rigorous statistical quality control checks. Results show higher interannual variability with increasing temperature trends in the glacierized regions of the Siachen (Karakoram Range) and Chotasigri (Great Himalayan Range). Karakoram Range has higher warming trends than the Great Himalayan Range. In case of precipitation, an overall decrease in precipitation is observed with contrasting trends in the last decade. Nino3.4 index is positively correlated with winter precipitation with similar interannual variability. In addition, at Siachen temperature and precipitation show strong negative correlation, and precipitation to spell length correlation is opposite at Siachen and Chotasigri

    Supraglacial ponds regulate runoff from Himalayan debris-covered glaciers

    Get PDF
    Meltwater and runoff from glaciers in High Mountain Asia is a vital freshwater resource for one fifth of the Earth's population. Between 13% and 36% of the region's glacierized areas exhibit surface debris cover and associated supraglacial ponds whose hydrological buffering roles remain unconstrained. We present a high-resolution meltwater hydrograph from the extensively debris-covered Khumbu Glacier, Nepal, spanning a seven-month period in 2014. Supraglacial ponds and accompanying debris cover modulate proglacial discharge by acting as transient and evolving reservoirs. Diurnally, the supraglacial pond system may store >23% of observed mean daily discharge, with mean recession constants ranging from 31 to 108 hours. Given projections of increased debris-cover and supraglacial pond extent across High Mountain Asia, we conclude that runoff regimes may become progressively buffered by the presence of supraglacial reservoirs. Incorporation of these processes is critical to improve predictions of the region's freshwater resource availability and cascading environmental effects downstream

    Cosmic-ray soil water monitoring: the development, status & potential of the COSMOS-India network

    Get PDF
    Soil moisture (SM) plays a central role in the hydrological cycle and surface energy balance and represents an important control on a range of land surface processes. Knowledge of the spatial and temporal dynamics of SM is important for applications ranging from numerical weather and climate predictions, the calibration and validation of remotely sensed data products, as well as water resources, flood and drought forecasting, agronomy and predictions of greenhouse gas fluxes. Since 2015, the Centre for Ecology and Ecology has been working in partnership with several Indian Research Institutes to develop COSMOS-India, a new network of SM monitoring stations that employ cosmic-ray soil moisture sensors (CRS) to deliver high temporal frequency, near-real time observations of SM at field scale. CRS provide continuous observations of near-surface (top 0.1 to 0.2 m) soil volumetric water content (VWC; m3 m-3) that are representative of a large footprint area (approximately 200 m in radius). To date, seven COSMOS-India sites have been installed and are operational at a range of locations that are characterised by differences in climate, soil type and land management. In this presentation, the development, current status and future potential of the COSMOS-India network will be discussed. Key results from the COSMOS-India network will be presented and analysed

    Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment"

    No full text
    A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April) and south-west monsoon in summer (June–September) dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km<sup>2</sup>. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007) is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is to augment stream runoff during the years of low summer discharge. This paper intends to highlight the importance of creating credible knowledge on the Himalayan cryospheric processes to develop a more representative global view on river flow response to cryospheric changes and locally sustainable water resources management strategies

    Comparison of climatic trends and variability among glacierized environments in the Western Himalayas

    No full text
    The climate and hydrology of the Western Himalayas is complex and a function of snow and glacier melt, land use, topography, and Indian summer and winter monsoon dynamics. Improving our knowledge about these processes is important from societal and agricultural points of view. In this study, an observational analysis is carried out to assess the changing climatic trends and the associated interannual variability in winter temperature and precipitation at three glacierized regions of Western Himalayas having distinctly different sub-regional characteristics. In situ observations of 23 years (1985–2007) are used. These observations are passed through rigorous statistical quality control checks. Results show higher interannual variability with increasing temperature trends in the glacierized regions of the Siachen (Karakoram Range) and Chotasigri (Great Himalayan Range). Karakoram Range has higher warming trends than the Great Himalayan Range. In case of precipitation, an overall decrease in precipitation is observed with contrasting trends in the last decade. Nino3.4 index is positively correlated with winter precipitation with similar interannual variability. In addition, at Siachen temperature and precipitation show strong negative correlation, and precipitation to spell length correlation is opposite at Siachen and Chotasigri

    Climate change, cryosphere and impacts in the Indian Himalayan Region

    Get PDF
    This study has benefitted from collaborations promoted by the Indian Himalayas Climate Adaptation Programme (www.ihcap.in), a project under the Global Programme Climate Change and Environment of the Swiss Agency for Development and Cooperation in cooperation with the Department of Science and Technology, Government of India (GoI), and with support from the Government of Himachal Pradesh and National Mission of Himalayan Studies, Ministry of Environment, Forest and Climate Change, GoI.Climate change and related impacts over the Indian Himalayan Region (IHR) remains poorly quantified. The present study reviews observed and modelled changes in the climate, cryosphere and impacts related to hazards, agriculture and ecosystems. An increasing temperature trend over the IHR is reported, which over a few locations is found to be higher than the global average. For precipitation, a complex and inconsistent response with considerable variation in the sign and magnitude of change is observed. Future projections show significant warming. Climate-driven changes and impacts are clearly observed. Snow cover has declined since the 1960s, with an enhanced decreasing trend during the 1990s and variable trends since 2000. Glaciers are losing mass and retreating at varying rates since the early 20th century, with an exception over the Karakoram region. An observed heterogeneous response of glaciers to atmospheric warming is controlled by regional variations in topography, debris cover, circulation and precipitation. Initial assessments of permafrost extent of 1 million km(2) across the IHR roughly translate into 14 times the glacier area. Extreme floods represent the most frequent natural disaster in the IHR. Studies have highlighted the significant threat from glacial lakes. Landslides occur in combination with heavy rainfall and flooding, with poor land- use practices such as road-cutting and deforestation being additional drivers. Climate change has also stressed traditional subsistence agriculture and food systems. Improving systematic and coordinated monitoring of climate and related impacts is crucial to contribute to effective climate change adaptation and response strategies.Publisher PDFPeer reviewe
    corecore