395 research outputs found

    Normal state properties of high angle grain boundaries in (Y,Ca)Ba2Cu3O7-delta

    Full text link
    By lithographically fabricating an optimised Wheatstone bridge geometry, we have been able to make accurate measurements of the resistance of grain boundaries in Y1-xCaxBa2Cu3O7-d between the superconducting transition temperature, Tc, and room temperature. Below Tc the normal state properties were assessed by applying sufficiently high currents. The behaviour of the grain boundary resistance versus temperature and of the conductance versus voltage are discussed in the framework charge transport through a tunnel barrier. The influence of misorientation angle, oxygen content, and calcium doping on the normal state properties is related to changes of the height and shape of the grain boundary potential barrier.Comment: 17 pages, 1 table, 5 figures, submitted to PR

    Designing environmental research for impact

    Get PDF
    Transdisciplinary research, involving close collaboration between researchers and the users of research, has been a feature of environmental problem solving for several decades, often spurred by the need to find negotiated outcomes to intractable problems. In 2005, the Australian government allocated funding to its environment portfolio for public good research, which resulted in consecutive four-year programmes (Commonwealth Environmental Research Facilities, National Environmental Research Program). In April 2014, representatives of the funders, researchers and research users associated with these programmes met to reflect on eight years of experience with these collaborative research models.This structured reflection concluded that successful multi-institutional transdisciplinary research is necessarily a joint enterprise between funding agencies, researchers and the end users of research. The design and governance of research programmes need to explicitly recognise shared accountabilities among the participants, while respecting the different perspectives of each group. Experience shows that traditional incentive systems for academic researchers, current trends in public sector management, and loose organisation of many end users, work against sustained transdisciplinary research on intractable problems, which require continuity and adaptive learning by all three parties. The likelihood of research influencing and improving environmental policy and management is maximised when researchers, funders and research users have shared goals; there is sufficient continuity of personnel to build trust and sustain dialogue throughout the research process from issue scoping to application of findings; and there is sufficient flexibility in the funding, structure and operation of transdisciplinary research initiatives to enable the enterprise to assimilate and respond to new knowledge and situations

    Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring.We would like to acknowledge H. Ghiradella (University at Albany), M. Blohm and S. Duclos (GE) and V. Greanya, J. Abo-Shaeer, C. Nehl and M. Sandrock (DARPA) for fruitful discussions. This work has been supported in part from DARPA contract W911NF-10-C-0069 ‘Bio Inspired Photonics’ and from General Electric’s Advanced Technology research funds. The content of the information does not necessarily reflect the position or the policy of the US Government

    Mineral chemistry of igneous melanite garnets from analcite-bearing volcanic rocks, Alberta, Canada

    Get PDF
    The mineral chemistry of melanite garnets from the Crowsnest volcanic rocks of SW Alberta, Canada, has been investigated by using electron microprobe scans, quantitative analyses and multivariate statistical analysis. The garnets occur with aegirine-augite, sanidine, analcite and rare plagioclase as phenocrysts in trachyte and phonolite flows, agglomerates and tuffs. Wavelength dispersive microprobe scans reveal complex zonation patterns, both normal and oscillatory. The results of fifty quantitative analyses were subjected to R-mode factor analysis to delineate the chemical exchanges producing the zonation. The chemical zonation of the garnets may be attributed to four independent binary exchanges; Al-Fe3+, Si-Ti, Ca-Mn and Mg-Fe2+. The stoichiometry of these garnets, based on microprobe and wet chemical Fe analyses, combined with the strongly antithetic behavior of Si and Ti lead us to infer that the Ti in these garnets is dominantly tetravalent. It is clear from this study that quantitative modelling of the processes of crystal growth and zonation of melanite garnets in alkaline, undersaturated igneous rocks should be aimed at simulating the four chemical exchanges listed above

    Effects of a Ceramic Biomaterial on Immune Modulatory Properties and Differentiation Potential of Human Mesenchymal Stromal Cells of Different Origin.

    Get PDF
    The aim of this study was to assess the immune modulatory properties of human mesenchymal stromal cells obtained from bone marrow (BM-MSCs), fat (ASCs), and cord blood (CB-MSCs) in the presence of a hydroxyapatite and tricalcium-phosphate (HA/TCP) biomaterial as a scaffold for MSC delivery. In resting conditions, a short-term culture with HA/TCP did not modulate the anti-apoptotic and suppressive features of the various MSC types toward T, B, and NK cells; in addition, when primed with inflammatory cytokines, MSCs similarly increased their suppressive capacities in the presence or absence of HA/TCP. The long-term culture of BM-MSCs with HA/TCP induced an osteoblast-like phenotype with upregulation of OSTERIX and OSTEOCALCIN, similar to what was obtained with dexamethasone and, to a higher extent, with bone morphogenetic protein 4 (BMP-4) treatment. MSC-derived osteoblasts did not trigger immune cell activation, but were less efficient than undifferentiated MSCs in inhibiting stimulated T and NK cells. Interestingly, their suppressive machinery included not only the activation of indoleamine-2,3 dioxygenase (IDO), which plays a central role in T-cell inhibition, but also cyclooxygenase-2 (COX-2) that was not significantly involved in the immune modulatory effect of human undifferentiated MSCs. Since COX-2 is significantly involved in bone healing, its induction by HA/TCP could also contribute to the therapeutic activity of MSCs for bone tissue engineering

    The COMPASS Experiment at CERN

    Get PDF
    The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both hadron and electromagnetic calorimeters. The setup has been successfully operated from 2002 onwards using a muon beam. Data with a hadron beam were also collected in 2004. This article describes the main features and performances of the spectrometer in 2004; a short summary of the 2006 upgrade is also given.Comment: 84 papes, 74 figure

    Cancers associated with Kaposi's sarcoma (KS) in AIDS: a link between KS herpesvirus and immunoblastic lymphoma

    Get PDF
    Kaposi's sarcoma (KS), common among persons with acquired immunodeficiency syndrome (AIDS), is caused by KS herpesvirus (KSHV) but whether KSHV causes other malignancies is uncertain. Using linked United States AIDS and cancer registries, we measured the incidence of specific malignancies in persons with AIDS (4–27 months after AIDS onset). We identified associations with KSHV by calculating a relative risk: cancer incidence in persons with KS (all were KSHV-infected) divided by incidence in persons without KS. Using Poisson regression, relative risks were adjusted for human immunodeficiency virus risk group, gender, age, race, and calendar year. We included 189 159 subjects (26 972 with KS). Immunoblastic lymphoma was significantly associated with KS (506 cases; relative risks: unadjusted 2.44, 95%CI 2.00–2.96, adjusted 1.58, 95%CI 1.29–1.93). Only one immunoblastic lymphoma had pleura as primary site. None of 37 other specified malignancies (other non-Hodgkin lymphomas, haematological malignancies, solid tumours) was significantly associated with KS. In summary, the association of immunoblastic lymphoma with KS was specific among examined malignancies and remained significant after statistical adjustment. Our findings, and the previously demonstrated presence of KSHV in the histologically related primary effusion lymphoma, suggest that KSHV is involved in the pathogenesis of some immunoblastic lymphomas. © 2001 Cancer Research Campaig

    Nitrogen doping into titanium dioxide by the sol–gel method using nitric acid

    Get PDF
    N-doped TiO(2) has been prepared by use of sol-gel systems containing titanium alkoxide, with nitric acid as the nitrogen source. The time needed for gelation of the systems was drastically reduced by ultrasonic irradiation. The peaks assigned to the nitrate and nitrous ions were observed by FT-IR measurement during the sol-gel reaction. The N-doping was confirmed by the observation of N-O peaks in the XPS spectrum of the sample heated at 400 A degrees C. The nitrate ion acted as an oxidizer of the ethanol solvent and titanium species. The TiO(2) became doped with nitrogen oxide species as a result of reduction of nitrate ion incorporated into the dried gel samples. These results indicated that the added nitric acid was reduced during the sol-gel transition and heating process, and the resulting NO species were situated in the titania networks. The UV and visible photocatalytic activity of the samples was confirmed by the degradation of trichloroethylene.ArticleRESEARCH ON CHEMICAL INTERMEDIATES. 37(8):869-881 (2011)journal articl

    3D finite element electrical model of larval zebrafish ECG signals

    Get PDF
    Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace’s equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions
    • …
    corecore