84 research outputs found

    Penetration of Alfvén waves into an upper stably-stratified layer excited by magnetoconvection in rotating spherical shells

    Get PDF
    The penetration of magneto-hydrodynamic (MHD) disturbances into an upper strongly stratified stable layer excited by magnetoconvection in rotating spherical shells is investigated. An analytic expression for the penetration distance is derived by considering perturbations of a stably stratified rotating MHD Boussinesq fluid in a semi-infinite region, with the rotation axis and a uniform magnetic field tilted relative to the gravity axis. Solutions for the response to MHD disturbances applied at the bottom boundary show that the disturbances propagate as Alfvén waves in the stable layer. Their propagation distance is proportional to the Alfvén wave speed and inversely proportion to both the arithmetic average of viscosity and magnetic diffusion and the total wavenumber of the disturbance. The derived expression for penetration distance is in good agreement with the numerical results for neutral convection in a rotating spherical shell with an upper stably stratified layer embedded in an axially uniform basic magnetic field

    Linear stability of steady zonal jet flows induced by a small-scale forcing on a plane

    Get PDF
    We analytically obtain steady isolated zonal jet solutions of the evolution equation of zonal flows on a β plane with a homogeneous zonal flow and a small-scale sinusoidal transversal flow in the background, derived by Manfroi and Young (1999). It is shown that these steady zonal jet solutions are all linearly unstable. Numerical time integrations of the evolution equation also confirm that the perturbed unstable steady solution becomes a uniform flow in the long run. These results suggest that mergers/disappearances of zonal jets superposed upon background forced two-dimensional turbulence on a β plane or a rotating sphere might be due to the intrinsic instability of the zonal jets

    Kinetic Analysis and Prediction of Thermal Decomposition Behavior of Tertiary Pyridine Resin in the Nitrate Form

    Get PDF
    AbstractThe thermal decomposition behavior of the tertiary pyridine resin, which was used during the nuclide-separation process in the Advanced Optimization by Recycling Instructive Elements (Advanced ORIENT) cycle, was investigated in its nitrate form (TPR-NO3), in order to determine ways of preventing its runaway reaction. A thermal analysis of TPR-NO3 and an analysis of the gases produced during decomposition were employed for the purpose. In addition, the kinetics parameters were evaluated via a kinetic analysis of the empirical thermal data. Finally, the validity of the reaction model was assessed by comparing the thermal behavior predicted by the estimated reaction model with that determined by the results of a gram-scale heating test performed in our previous study. We found that, when TPR-NO3 was heated, first, nitric acid was removed. Subsequently, TPR-NO3 was oxidized by the removed nitric acid. Under the assumption that it took place an autocatalytic oxidation and nth order thermal decomposition in parallel, the thermogravimetric analysis data could be fitted very well using a nonlinear regression model. The thermal behavior of TPR-NO3 could be predicted by the reaction model determined in this study under conditions where the cooling effect owing to evaporation was ignored. In addition, the maximum temperature and time to maximum rate of a runaway reaction predicted using the determined reaction model gave the result on the side of prudence

    Relationship between lumbar disc degeneration on MRI and low back pain: A cross-sectional community study

    Get PDF
    Purpose: Although an association has been suggested between disc degeneration (DD) and low back pain (LBP), some DD is thought to be an age-related change unrelated to symptoms. Age-inappropriate DD, however, may be associated with LBP. The purpose of this study was to investigate whether there is a difference in LBP and LBP-related quality of life between age-appropriate and age-inappropriate DD, as assessed by magnetic resonance imaging (MRI). Participants and methods: In this cross-sectional study, degenerative change in the lumbar intervertebral discs of 382 subjects (age range, 27-82 years) was evaluated by MRI. Degenerative Disc Disease (DDD) scores were assigned using the Schneiderman classification, as the sum of grades for all intervertebral levels (0-15). We classified subjects into three groups according to age and DDD score: Low DD (mild DD relative to age), Appropriate (age-appropriate DD), and High DD (severe DD relative to age). We compared the three groups in terms of LBP prevalence, LBP intensity, LBP-specific quality of life (QOL) according to the Roland-Morris Disability Questionnaire (RDQ), and the Short Form-36 Item Health Survey (SF-36). Results: Of 382 subjects, there were 35% in the Low DD group, 54% in the Appropriate group, and 11% in the High DD group. There were no significant differences among the groups in terms of prevalence of LBP, LBP intensity, RDQ score, or SF-36 score. Conclusion: No association was found between age-inappropriate DD (Low or High DD group) and age-appropriate DD (Appropriate group) in terms of prevalence of LBP, LBP intensity, RDQ, or SF-36

    Obliquity of an Earth-like planet from frequency modulation of its direct imaged lightcurve: mock analysis from general circulation model simulation

    Full text link
    Direct-imaging techniques of exoplanets have made significant progress recently, and will eventually enable to monitor photometric and spectroscopic signals of earth-like habitable planets in the future. The presence of clouds, however, would remain as one of the most uncertain components in deciphering such direct-imaged signals of planets. We attempt to examine how the planetary obliquity produce different cloud patterns by performing a series of GCM (General Circulation Model) simulation runs using a set of parameters relevant for our Earth. Then we use the simulated photometric lightcurves to compute their frequency modulation due to the planetary spin-orbit coupling over an entire orbital period, and attempt to see to what extent one can estimate the obliquity of an Earth-twin. We find that it is possible to estimate the obliquity of an Earth-twin within the uncertainty of several degrees with a dedicated 4 m space telescope at 10 pc away from the system if the stellar flux is completely blocked. While our conclusion is based on several idealized assumptions, a frequency modulation of a directly-imaged earth-like planet offers a unique methodology to determine its obliquity.Comment: 29 pages, 18 figures, accepted for publication in Ap

    Associations between clinical neck symptoms and various evaluations ofcervical intervertebral disc degeneration by magnetic resonance imaging

    Get PDF
    Purpose: Magnetic resonance imaging (MRI) is widely used to evaluate intervertebral disc degeneration. Recently, various evaluations of cervical disc degeneration using MRI have been conducted, but there is no gold standard. The purpose of this study was to compare the reproducibilities of previously reported classifications for evaluating cervical disc degeneration by MRI and their associations with clinical symptoms. Participants and methods: A total of 582 subjects underwent conventional MRI of the cervical spine. Disc degeneration was assessed in each intervertebral disc from C2/3 to C7/T1 using five different classifications: Matsumoto's grading system, Miyazaki's grading system, Nakashima's grading system, Jacobs' grading system, and Suzuki's grading system. MR images of 30 participants were used, and Cohen's kappa coefficient of agreement of each classification was calculated for intra-observer and inter-observer reliabilities. These five classifications of disc degeneration and changes of vertebral endplates were measured, and associations with clinical symptoms were assessed. Results: Kappa (κ) values of intra-observer agreement were higher for Jacobs' classification, whereas those of inter-observer agreement were higher for Nakashima's and Jacobs' classifications than for other classifications. The prevalences of neck pain and shoulder stiffness were 27.4% and 41.9%, respectively. There were no associations for any classifications of disc degeneration and Modic types with neck pain or shoulder stiffness. Only the presence of Schmorl's nodes was associated with neck pain. Conclusion: At present, there is no specific classification for cervical disc degeneration associated with clinical symptoms. Vertebral endplate changes might be associated with clinical symptoms. It may be necessary to create a new classification for better reproducibility of the evaluation of cervical disc degeneration

    Mesoscopic bar magnet based on ε-Fe2O3 hard ferrite

    Get PDF
    Ferrite magnets have a long history. They are used in motors, magnetic fluids, drug delivery systems, etc. Herein we report a mesoscopic ferrite bar magnet based on rod-shaped ε-Fe2O3 with a large coercive field (>25 kOe). The ε-Fe2O3–based bar magnet is a single crystal with a single magnetic domain along the longitudinal direction. A wide frequency range spectroscopic study shows that the crystallographic a-axis of ε-Fe2O3, which corresponds to the longitudinal direction of the bar magnet, plays an important role in linear and non-linear magneto-optical transitions, phonon modes, and the magnon (Kittel mode). Due to its multiferroic property, a magnetic-responsive non-linear optical sheet is manufactured as an application using an ε-Fe2O3–based bar magnet, resin, and polyethylene terephthalate. Furthermore, from the viewpoint of the large coercive field property, we demonstrate that a mesoscopic ε-Fe2O3 bar magnet can be used as a magnetic force microscopy probe

    Regioselective glucosidation of trans-resveratrol in Escherichia coli expressing glucosyltransferase from Phytolacca americana

    Get PDF
    A glucosyltransferase (GT) of Phytolacca americana (PaGT3) was expressed in Escherichia coli and purified for the synthesis of two O-β-glucoside products of trans-resveratrol. The reaction was moderately regioselective with a ratio of 4′-O-β-glucoside: 3-O-β-glucoside at 10:3. We used not only the purified enzyme but also the E. coli cells containing the PaGT3 gene for the synthesis of glycoconjugates. E. coli cell cultures also have other advantages, such as a shorter incubation time compared with cultured plant cells, no need for the addition of exogenous glucosyl donor compounds such as UDP-glucose, and almost complete conversion of the aglycone to the glucoside products. Furthermore, a homology model of PaGT3 and mutagenesis studies suggested that His-20 would be a catalytically important residue

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution
    corecore