14,712 research outputs found
Pupil remapping for high contrast astronomy: results from an optical testbed
The direct imaging and characterization of Earth-like planets is among the
most sought-after prizes in contemporary astrophysics, however current optical
instrumentation delivers insufficient dynamic range to overcome the vast
contrast differential between the planet and its host star. New opportunities
are offered by coherent single mode fibers, whose technological development has
been motivated by the needs of the telecom industry in the near infrared. This
paper presents a new vision for an instrument using coherent waveguides to
remap the pupil geometry of the telescope. It would (i) inject the full pupil
of the telescope into an array of single mode fibers, (ii) rearrange the pupil
so fringes can be accurately measured, and (iii) permit image reconstruction so
that atmospheric blurring can be totally removed. Here we present a laboratory
experiment whose goal was to validate the theoretical concepts underpinning our
proposed method. We successfully confirmed that we can retrieve the image of a
simulated astrophysical object (in this case a binary star) though a pupil
remapping instrument using single mode fibers.Comment: Accepted in Optics Expres
Aerospace lubrication technology transfer to industrial applications
Difficulties encountered in entering industrial markets with an aerospace lubrication and coating technology are discussed along with the technical, financial, and managerial solutions that evolved
Two-body anticorrelation in a harmonically trapped ideal Bose gas
We predict the existence of a dip below unity in the second-order coherence
function of a partially condensed ideal Bose gas in harmonic confinement,
signaling the anticorrelation of density fluctuations in the sample. The dip in
the second-order coherence function is revealed in a canonical-ensemble
calculation, corresponding to a system with fixed total number of particles. In
a grand-canonical ensemble description, this dip is obscured by the
occupation-number fluctuation catastrophe of the ideal Bose gas. The
anticorrelation is most pronounced in highly anisotropic trap geometries
containing small particle numbers. We explain the fundamental physical
mechanism which underlies this phenomenon, and its relevance to experiments on
interacting Bose gases.Comment: 10 pages, 5 figures. v2: Minor changes and corrections to figures and
text. To appear in PR
The molecular and dusty composition of Betelgeuse's inner circumstellar environment
The study of the atmosphere of red supergiant stars in general and of
Betelgeuse (alpha Orionis) in particular is of prime importance to understand
dust formation and how mass is lost to the interstellar medium in evolved
massive stars. A molecular shell, the MOLsphere (Tsuji, 2000a), in the
atmosphere of Betelgeuse has been proposed to account for the near- and
mid-infrared spectroscopic observations of Betelgeuse. The goal is to further
test this hypothesis and to identify some of the molecules in this MOLsphere.
We report on measurements taken with the mid-infrared two-telescope beam
combiner of the VLTI, MIDI, operated between 7.5 and 13.5 m. The data are
compared to a simple geometric model of a photosphere surrounded by a warm
absorbing and emitting shell. Physical characteristics of the shell are
derived: size, temperature and optical depth. The chemical constituents are
determined with an analysis consistent with available infrared spectra and
interferometric data. We are able to account for the measured optical depth of
the shell in the N band, the ISO-SWS spectrum and K and L band interferometric
data with a shell whose inner and outer radii are given by the above range and
with the following species: H2O, SiO and Al2O3. These results confirm the
MOLsphere model. We bring evidence for more constituents and for the presence
of species participating in the formation of dust grains in the atmosphere of
the star, i.e. well below the distance at which the dust shell is detected. We
believe these results bring key elements to the understanding of mass loss in
Betelgeuse and red supergiants in general and bring support to the dust-driven
scenario.Comment: 11 pages, 10 figures, accepted for publication in A&
Two-point density correlations of quasicondensates in free expansion
We measure the two-point density correlation function of freely expanding
quasicondensates in the weakly interacting quasi-one-dimensional (1D) regime.
While initially suppressed in the trap, density fluctuations emerge gradually
during expansion as a result of initial phase fluctuations present in the
trapped quasicondensate. Asymptotically, they are governed by the thermal
coherence length of the system. Our measurements take place in an intermediate
regime where density correlations are related to near-field diffraction effects
and anomalous correlations play an important role. Comparison with a recent
theoretical approach described by Imambekov et al. yields good agreement with
our experimental results and shows that density correlations can be used for
thermometry of quasicondensates.Comment: 4 pages, 4 figures, minor change
The close circumstellar environment of Betelgeuse - Adaptive optics spectro-imaging in the near-IR with VLT/NACO
Context: Betelgeuse is one the largest stars in the sky in terms of angular
diameter. Structures on the stellar photosphere have been detected in the
visible and near-infrared as well as a compact molecular environment called the
MOLsphere. Mid-infrared observations have revealed the nature of some of the
molecules in the MOLsphere, some being the precursor of dust. Aims: Betelgeuse
is an excellent candidate to understand the process of mass loss in red
supergiants. Using diffraction-limited adaptive optics (AO) in the
near-infrared, we probe the photosphere and close environment of Betelgeuse to
study the wavelength dependence of its extension, and to search for
asymmetries. Methods: We obtained AO images with the VLT/NACO instrument,
taking advantage of the "cube" mode of the CONICA camera to record separately a
large number of short-exposure frames. This allowed us to adopt a "lucky
imaging" approach for the data reduction, and obtain diffraction-limited images
over the spectral range 1.04-2.17 m in 10 narrow-band filters. Results: In
all filters, the photosphere of Betelgeuse appears partly resolved. We identify
an asymmetric envelope around the star, with in particular a relatively bright
"plume" extending in the southwestern quadrant up to a radius of approximately
six times the photosphere. The CN molecule provides an excellent match to the
1.09 mic bandhead in absorption in front of the stellar photosphere, but the
emission spectrum of the plume is more difficult to interpret. Conclusions: Our
AO images show that the envelope surrounding Betelgeuse has a complex and
irregular structure. We propose that the southwestern plume is linked either to
the presence of a convective hot spot on the photosphere, or to the rotation of
the star.Comment: 12 pages. Astronomy and Astrophysics (2009) in pres
Resolving asymmetries along the pulsation cycle of the Mira star X Hya
The mass-loss process in Mira stars probably occurs in an asymmetric way
where dust can form in inhomogeneous circumstellar molecular clumps. Following
asymmetries along the pulsation cycle can give us clues about these mass-loss
processes. We imaged the Mira star X Hya and its environnement at different
epochs to follow the evolution of the morphology in the continuum and in the
molecular bands. We observed X Hya with AMBER in J-H-K at low resolution at two
epochs. We modelled squared visibilities with geometrical and physical models.
We also present imaging reconstruction results obtained with MiRA and based on
the physical a priori images. We report on the angular scale change of X Hya
between the two epochs. 1D CODEX profiles allowed us to understand and model
the spectral variation of squared visibilities and constrain the stellar
parameters. Reconstructed model-dependent images enabled us to reproduce
closure phase signals and the azimuthal dependence of squared visibilities.
They show evidence for material inhomogeneities located in the immediate
environment of the star.Comment: Accepted for publication in A&A, 17 pages, 16 figure
Two-point phase correlations of a one-dimensional bosonic Josephson junction
We realize a one-dimensional Josephson junction using quantum degenerate Bose
gases in a tunable double well potential on an atom chip. Matter wave
interferometry gives direct access to the relative phase field, which reflects
the interplay of thermally driven fluctuations and phase locking due to
tunneling. The thermal equilibrium state is characterized by probing the full
statistical distribution function of the two-point phase correlation.
Comparison to a stochastic model allows to measure the coupling strength and
temperature and hence a full characterization of the system
- …
