We predict the existence of a dip below unity in the second-order coherence
function of a partially condensed ideal Bose gas in harmonic confinement,
signaling the anticorrelation of density fluctuations in the sample. The dip in
the second-order coherence function is revealed in a canonical-ensemble
calculation, corresponding to a system with fixed total number of particles. In
a grand-canonical ensemble description, this dip is obscured by the
occupation-number fluctuation catastrophe of the ideal Bose gas. The
anticorrelation is most pronounced in highly anisotropic trap geometries
containing small particle numbers. We explain the fundamental physical
mechanism which underlies this phenomenon, and its relevance to experiments on
interacting Bose gases.Comment: 10 pages, 5 figures. v2: Minor changes and corrections to figures and
text. To appear in PR