180 research outputs found

    Healing Through History: a qualitative evaluation of a social medicine consultation curriculum for internal medicine residents

    Get PDF
    Background: Social context guides care; stories sustain meaning; neither is routinely prioritized in residency training. Healing Through History (HTH) is a social medicine consultation curriculum integrating social determinants of health narrative into clinical care for medically and socially complex patients. The curriculum is part of an internal medicine (IM) residency outpatient clinical rotation at a Veterans Health Administration hospital. Our aim was to explore how in-depth social medicine consultations may impact resident clinical practice and foster meaning in work. Methods: From 2017 to 2019, 49 categorical and preliminary residents in their first year of IM training were given two half-day sessions to identify and interview a patient; develop a co-produced social medicine narrative; review it with patient and faculty; and share it in the electronic health record (EHR). Medical anthropologists conducted separate 90-min focus groups of first- and second-year IM residents in 2019, 1–15 months from the experience. Results: 46 (94%) completed HTH consultations, of which 40 (87%) were approved by patients and published in the EHR. 12 (46%) categorical IM residents participated in focus groups; 6 PGY1, and 6 PGY2. Qualitative analysis yielded 3 themes: patient connection, insight, and clinical impact; clinical skill development; and structural barriers to the practice of social medicine. Conclusions: HTH offers a model for teaching co-production through social and narrative medicine consultation in complex clinical care, while fostering meaning in work. Integration throughout training may further enhance impact

    Pathogenic variants in SQOR encoding sulfide:quinone oxidoreductase are a potentially treatable cause of Leigh disease

    Full text link
    Hydrogen sulfide, a signaling molecule formed mainly from cysteine, is catabolized by sulfide:quinone oxidoreductase (gene SQOR). Toxic hydrogen sulfide exposure inhibits complex IV. We describe children of two families with pathogenic variants in SQOR. Exome sequencing identified variants; SQOR enzyme activity was measured spectrophotometrically, protein levels evaluated by western blotting, and mitochondrial function was assayed. In family A, following a brief illness, a 4- year- old girl presented comatose with lactic acidosis and multiorgan failure. After stabilization, she remained comatose, hypotonic, had neurostorming episodes, elevated lactate, and Leigh- like lesions on brain imaging. She died shortly after. Her 8- year- old sister presented with a rapidly fatal episode of coma with lactic acidosis, and lesions in the basal ganglia and left cortex. Muscle and liver tissue had isolated decreased complex IV activity, but normal complex IV protein levels and complex formation. Both patients were homozygous for c.637G- >- A, which we identified as a founder mutation in the Lehrerleut Hutterite with a carrier frequency of 1 in 13. The resulting p.Glu213Lys change disrupts hydrogen bonding with neighboring residues, resulting in severely reduced SQOR protein and enzyme activity, whereas sulfide generating enzyme levels were unchanged. In family B, a boy had episodes of encephalopathy and basal ganglia lesions. He was homozygous for c.446delT and had severely reduced fibroblast SQOR enzyme activity and protein levels. SQOR dysfunction can result in hydrogen sulfide accumulation, which, consistent with its known toxicity, inhibits complex IV resulting in energy failure. In conclusion, SQOR deficiency represents a new, potentially treatable, cause of Leigh disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162807/2/jimd12232.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162807/1/jimd12232_am.pd

    Fluorescent N-arylaminonaphthalene sulfonate probes for amyloid aggregation of α-synuclein.

    Get PDF
    The deposition of fibrillar structures (amyloids) is characteristic of pathological conditions including Alzheimer's and Parkinson's diseases. The detection of protein deposits and the evaluation of their kinetics of aggregation are generally based on fluorescent probes such as thioflavin T and Congo red. In a search for improved fluorescence tools for studying amyloid formation, we explored the ability of N-arylaminonaphthalene sulfonate (NAS) derivatives to act as noncovalent probes of α-synuclein (AS) fibrillation, a process linked to Parkinson's disease and other neurodegenerative disorders. The compounds bound to fibrillar AS with micromolar K(d)s, and exhibited fluorescence enhancement, hyperchromism, and high anisotropy. We conclude that the probes experience a hydrophobic environment and/or restricted motion in a polar region. Time- and spectrally resolved emission intensity and anisotropy provided further information regarding structural features of the protein and the dynamics of solvent relaxation. The steady-state and time-resolved parameters changed during the course of aggregation. Compared with thioflavin T, NAS derivatives constitute more sensitive and versatile probes for AS aggregation, and in the case of bis-NAS detect oligomeric as well as fibrillar species. They can function in convenient, continuous assays, thereby providing useful tools for studying the mechanisms of amyloid formation and for high-throughput screening of factors inhibiting and/or reversing protein aggregation in neurodegenerative diseases

    Infectivity in Skeletal Muscle of Cattle with Atypical Bovine Spongiform Encephalopathy

    Get PDF
    The amyloidotic form of bovine spongiform encephalopathy (BSE) termed BASE is caused by a prion strain whose biological properties differ from those of typical BSE, resulting in a clinically and pathologically distinct phenotype. Whether peripheral tissues of BASE-affected cattle contain infectivity is unknown. This is a critical issue since the BASE prion is readily transmissible to a variety of hosts including primates, suggesting that humans may be susceptible. We carried out bioassays in transgenic mice overexpressing bovine PrP (Tgbov XV) and found infectivity in a variety of skeletal muscles from cattle with natural and experimental BASE. Noteworthy, all BASE muscles used for inoculation transmitted disease, although the attack rate differed between experimental and natural cases (∌70% versus ∌10%, respectively). This difference was likely related to different prion titers, possibly due to different stages of disease in the two conditions, i.e. terminal stage in experimental BASE and pre-symptomatic stage in natural BASE. The neuropathological phenotype and PrPres type were consistent in all affected mice and matched those of Tgbov XV mice infected with brain homogenate from natural BASE. The immunohistochemical analysis of skeletal muscles from cattle with natural and experimental BASE showed the presence of abnormal prion protein deposits within muscle fibers. Conversely, Tgbov XV mice challenged with lymphoid tissue and kidney from natural and experimental BASE did not develop disease. The novel information on the neuromuscular tropism of the BASE strain, efficiently overcoming species barriers, underlines the relevance of maintaining an active surveillance

    Simple model systems: a challenge for Alzheimer's disease

    Get PDF
    The success of biomedical researches has led to improvement in human health and increased life expectancy. An unexpected consequence has been an increase of age-related diseases and, in particular, neurodegenerative diseases. These disorders are generally late onset and exhibit complex pathologies including memory loss, cognitive defects, movement disorders and death. Here, it is described as the use of simple animal models such as worms, fishes, flies, Ascidians and sea urchins, have facilitated the understanding of several biochemical mechanisms underlying Alzheimer's disease (AD), one of the most diffuse neurodegenerative pathologies. The discovery of specific genes and proteins associated with AD, and the development of new technologies for the production of transgenic animals, has helped researchers to overcome the lack of natural models. Moreover, simple model systems of AD have been utilized to obtain key information for evaluating potential therapeutic interventions and for testing efficacy of putative neuroprotective compounds

    Enriched Environment Experience Overcomes Learning Deficits and Depressive-Like Behavior Induced by Juvenile Stress

    Get PDF
    Mood disorders affect the lives and functioning of millions each year. Epidemiological studies indicate that childhood trauma is predominantly associated with higher rates of both mood and anxiety disorders. Exposure of rats to stress during juvenility (JS) (27–29 days of age) has comparable effects and was suggested as a model of induced predisposition for these disorders. The importance of the environment in the regulation of brain, behavior and physiology has long been recognized in biological, social and medical sciences. Here, we studied the effects of JS on emotional and cognitive aspects of depressive-like behavior in adulthood, on Hypothalamic-Pituitary-Adrenal (HPA) axis reactivity and on the expression of cell adhesion molecule L1 (L1-CAM). Furthermore, we combined it with the examination of potential reversibility by enriched environment (EE) of JS – induced disturbances of emotional and cognitive aspects of behavior in adulthood. Three groups were tested: Juvenile Stress –subjected to Juvenile stress; Enriched Environment – subjected to Juvenile stress and then, from day 30 on to EE; and Naïves. In adulthood, coping and stress responses were examined using the elevated plus-maze, open field, novel setting exploration and two way shuttle avoidance learning. We found that, JS rats showed anxiety- and depressive-like behaviors in adulthood, altered HPA axis activity and altered L1-CAM expression. Increased expression of L1-CAM was evident among JS rats in the basolateral amygdala (BLA) and Thalamus (TL). Furthermore, we found that EE could reverse most of the effects of Juvenile stress, both at the behavioral, endocrine and at the biochemical levels. The interaction between JS and EE resulted in an increased expression of L1-CAM in dorsal cornu ammonis (CA) area 1 (dCA1)

    Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglial activation is an important histologic characteristic of the pathology of Alzheimer’s disease (AD). One hypothesis is that amyloid beta (AÎČ) peptide serves as a specific stimulus for tyrosine kinase-based microglial activation leading to pro-inflammatory changes that contribute to disease. Therefore, inhibiting AÎČ stimulation of microglia may prove to be an important therapeutic strategy for AD.</p> <p>Methods</p> <p>Primary murine microglia cultures and the murine microglia cell line, BV2, were used for stimulation with fibrillar AÎČ1-42. The non-receptor tyrosine kinase inhibitor, dasatinib, was used to treat the cells to determine whether Src family kinase activity was required for the AÎČ stimulated signaling response and subsequent increase in TNFα secretion using Western blot analysis and enzyme-linked immunosorbent assay (ELISA), respectively. A histologic longitudinal analysis was performed using an AD transgenic mouse model, APP/PS1, to determine an age at which microglial protein tyrosine kinase levels increased in order to administer dasatinib via mini osmotic pump diffusion. Effects of dasatinib administration on microglial and astroglial activation, protein phosphotyrosine levels, active Src kinase levels, AÎČ plaque deposition, and spatial working memory were assessed via immunohistochemistry, Western blot, and T maze analysis.</p> <p>Results</p> <p>AÎČ fibrils stimulated primary murine microglia via a tyrosine kinase pathway involving Src kinase that was attenuated by dasatinib. Dasatinib administration to APP/PS1 mice decreased protein phosphotyrosine, active Src, reactive microglia, and TNFα levels in the hippocampus and temporal cortex. The drug had no effect on GFAP levels, AÎČ plaque load, or the related tyrosine kinase, Lyn. These anti-inflammatory changes correlated with improved performance on the T maze test in dasatinib infused animals compared to control animals.</p> <p>Conclusions</p> <p>These data suggest that amyloid dependent microgliosis may be Src kinase dependent <it>in vitro</it> and <it>in vivo.</it> This study defines a role for Src kinase in the microgliosis characteristic of diseased brains and suggests that particular tyrosine kinase inhibition may be a valid anti-inflammatory approach to disease. Dasatinib is an FDA-approved drug for treating chronic myeloid leukemia cancer with a reported ability to cross the blood-brain barrier. Therefore, this suggests a novel use for this drug as well as similar acting molecules.</p

    Caspase activation precedes and leads to tangles

    Get PDF
    Studies of post-mortem tissue have shown that the location of fibrillar tau deposits, called neurofibrillary tangles (NFT), matches closely with regions of massive neuronal death(1,2), severe cytological abnormalities(3), and markers of caspase activation and apoptosis(4–6), leading to the idea that tangles cause neurodegeneration in Alzheimer’s disease and tau-related frontotemporal dementia. However, using in vivo multiphoton imaging to observe tangles and activation of executioner caspases in living tau transgenic mice (Tg4510 strain), we find the opposite: caspase activation occurs first, and precedes tangle formation by hours to days. New tangles form within a day. After a new tangle forms, the neuron remains alive and caspase activity seems to be suppressed. Similarly, introduction of wild-type 4-repeat tau (Tau-4R) into wild-type animals triggered caspase activation, tau truncation and tau aggregation. Adeno-associated virus-mediated expression of a construct mimicking caspase-cleaved tau into wild-type mice led to the appearance of intracellular aggregates, tangle-related conformational- and phospho-epitopes, and the recruitment of full-length endogenous tau to the aggregates. On the basis of these data, we propose a new model in which caspase activation cleaves tau to initiate tangle formation, then truncated tau recruits normal tau to misfold and form tangles. Because tangle-bearing neurons are long-lived, we suggest that tangles are ‘off pathway’ to acute neuronal death. Soluble tau species, rather than fibrillar tau, may be the critical toxic moiety underlying neurodegeneration

    EU och kampen mot mĂ€nniskohandel – en principal-agentanalys av implementeringen av EU:s lagstiftning

    No full text
    I denna kandidatuppsats har jag granskat Europeiska unionens direktiv om förebyggande och bekĂ€mpande av mĂ€nniskohandel, om skydd av dess offer och om ersĂ€ttande av rĂ„dets rambeslut 2002/629/RIF.[1] Detta har skett genom att jag redogjort för det underskott som rĂ„der bland majoriteten av EU:s medlemsstater gĂ€llande implementeringen av direktivet samt genom att analysera de Ă„tgĂ€rder som jag anser kan vidtas för att motverka detta underskott. För att redogöra för dessa Ă„tgĂ€rder har jag valt att anvĂ€nda mig av en analysram som jag konstruerat utifrĂ„n den s.k. principal-agentteorin, dĂ€r fokus riktats mot EU-kom­mis­sionen och unionens medlemsstater samt de tilldelade roller som dessa fĂ„tt vid implemen­te­ring­en av EU-direktiv. Enligt principal-agentteorin ber EU-kommissionen (”principalen”) medlemsstaterna att handla Ă„ kom­mis­sion­ens vĂ€gnar (i egenskap av ”agenter”). Syftet med analysen har varit att sĂ„vĂ€l förklara varför det uppstĂ„r problem vid implementeringen av det ovan nĂ€mnda EU-direktivet som att diskutera förslag pĂ„ Ă„tgĂ€rder som jag anser att kom­mis­sion­en kan vidta för att motverka det rĂ„dande underskottet av direktivet. [1] Europaparlamentets och rĂ„dets direktiv 2011/36/EU (Dir. 2011/36/EU)
    • 

    corecore