515 research outputs found

    Quark Effects in the Gluon Condensate Contribution to the Scalar Glueball Correlation Function

    Full text link
    One-loop quark contributions to the dimension-four gluon condensate term in the operator product expansion (OPE) of the scalar glueball correlation function are calculated in the MS-bar scheme in the chiral limit of nfn_f quark flavours. The presence of quark effects is shown not to alter the cancellation of infrared (IR) singularities in the gluon condensate OPE coefficients. The dimension-four gluonic condensate term represents the leading power corrections to the scalar glueball correlator and, therein, the one-loop logarithmic contributions provide the most important condensate contribution to those QCD sum-rules independent of the low-energy theorem (the subtracted sum-rules).Comment: latex2e, 6 pages, 7 figures embedded in latex fil

    Deconstructing 1S0 nucleon-nucleon scattering

    Full text link
    A distorted-wave method is used to analyse nucleon-nucleon scattering in the 1S0 channel. Effects of one-pion exchange are removed from the empirical phase shift to all orders by using a modified effective-range expansion. Two-pion exchange is then subtracted in the distorted-wave Born approximation, with matrix elements taken between scattering waves for the one-pion exchange potential. The residual short-range interaction shows a very rapid energy dependence for kinetic energies above about 100 MeV, suggesting that the breakdown scale of the corresponding effective theory is only 270MeV. This may signal the need to include the Delta resonance as an explicit degree of freedom in order to describe scattering at these energies. An alternative strategy of keeping the cutoff finite to reduce large, but finite, contributions from the long-range forces is also discussed.Comment: 10 pages, 2 figures (introduction revised, references added; version to appear in EPJA

    Magnetic ground state of the two isostructual polymeric quantum magnets [Cu(HF2)(pyrazine)2]SbF6 and [Co(HF2)(pyrazine)2]SbF6 investigated with neutron powder diffraction

    Get PDF
    The magnetic ground state of two isostructural coordination polymers, (i) the quasi-two-dimensional S=1/2 square-lattice antiferromagnet [Cu(HF2)(pyrazine)2]SbF6 and (ii) a related compound [Co(HF2)(pyrazine)2]SbF6, was examined with neutron powder diffraction measurements. We find that the ordered moments of the Heisenberg S=1/2 Cu(II) ions in [Cu(HF2)(pyrazine)2]SbF6 are 0.6(1)μb, while the ordered moments for the Co(II) ions in [Co(HF2)(pyrazine)2]SbF6 are 3.02(6)μb. For Cu(II), this reduced moment indicates the presence of quantum fluctuations below the ordering temperature. We show from heat capacity and electron spin resonance measurements that due to the crystal electric field splitting of the S=3/2 Co(II) ions in [Co(HF2)(pyrazine)2]SbF6, this isostructual polymer also behaves as an effective spin-half magnet at low temperatures. The Co moments in [Co(HF2)(pyrazine)2]SbF6 show strong easy-axis anisotropy, neutron diffraction data, which do not support the presence of quantum fluctuations in the ground state, and heat capacity data, which are consistent with 2D or close to 3D spatial exchange anisotropy

    Hydrodynamical Description of 200 A GeV/c S+Au Collisions: Hadron and Electromagnetic Spectra

    Full text link
    We study relativistic S+Au collisions at 200 A GeV/c using a hydrodynamical approach. We test various equations of state (EOSs), which are used to describe the strongly interacting matter at densities attainable in the CERN-SPS heavy ion experiments. For each EOS, suitable initial conditions can be determined to reproduce the experimental hadron spectra; this emphasizes the ambiguity between the initial conditions and the EOS in such an approach. Simultaneously, we calculate the resulting thermal photon and dielectron spectra, and compare with experiments. If one allows the excitation of resonance states with increasing temperature, the electro-magnetic signals from scenarios with and without phase transition are very similar and are not resolvable within the current experimental resolution. With regard to the CERES dilepton data, none of the EOSs considered, in conjunction with the standard leading order dilepton rates, succeed in reproducing the observed excess of dileptons below the rho peak. Our work, however, suggests that an improved measurement of the photon and dilepton spectra has the potential to strongly constrain the EOS.Comment: Uses REVTeX, 48 pages, 13 Postscript figure

    Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector

    Full text link
    The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure

    Limits to the muon flux from WIMP annihilation in the center of the Earth with the AMANDA detector

    Full text link
    A search for nearly vertical up-going muon-neutrinos from neutralino annihilations in the center of the Earth has been performed with the AMANDA-B10 neutrino detector. The data sample collected in 130.1 days of live-time in 1997, ~10^9 events, has been analyzed for this search. No excess over the expected atmospheric neutrino background is oberved. An upper limit at 90% confidence level on the annihilation rate of neutralinos in the center of the Earth is obtained as a function of the neutralino mass in the range 100 GeV-5000 GeV, as well as the corresponding muon flux limit.Comment: 14 pages, 11 figures. Version accepted for publication in Physical Review

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication
    corecore