228 research outputs found
Splenomegaly, elevated alkaline phosphatase and mutations in the SRSF2/ASXL1/RUNX1 gene panel are strong adverse prognostic markers in patients with systemic mastocytosis
We evaluated the impact of clinical and molecular characteristics on overall survival (OS) in 108 patients with indolent (n=41) and advanced SM (advSM, n=67). Organomegaly was measured by magnetic resonance imaging (MRI)-based volumetry of liver and spleen. In multivariate analysis of all patients, an increased spleen volume greater than or equal to450?ml (hazard ratio [HR], 5.2; 95% confidence interval [CI], [2.1–13.0]; P=0.003) and an elevated alkaline phosphatase (AP; HR 5.0 [1.1–22.2]; P=0.02) were associated with adverse OS. The 3-year OS was 100, 77, and 39%, respectively (P<0.0001), for patients with 0 (low-risk, n=37), 1 (intermediate-risk, n=32) or 2 (high-risk, n=39) parameters. For advSM patients with fully available clinical and molecular data (n=60), univariate analysis identified splenomegaly greater than or equal to1200?ml, elevated AP and mutations in the SRSF2/ASXL1/RUNX1 (S/A/R) gene panel as significant prognostic markers. In multivariate analysis, mutations in S/A/R (HR, 3.2 [1.1–9.6]; P=0.01) and elevated AP (HR 2.6 [1.0–7.1]; P=0.03) remained predictive adverse prognostic markers for OS. The 3-year OS was 76% and 38%, respectively (P=0.0003), for patients with 0-1 (intermediate-risk, n=28) or 2 (high-risk, n=32) parameters. We conclude that splenomegaly, elevated AP and mutations in the S/A/R gene panel are independent of the WHO classification and provide the most relevant prognostic information in SM patient
Gene expression profile of peripheral blood lymphocytes from renal cell carcinoma patients treated with IL-2, Interferon-α and dendritic cell vaccine
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e50221, doi:10.1371/journal.pone.0050221.Lymphocytes are a key component of the immune system and their differentiation and function are directly influenced by cancer. We examined peripheral blood lymphocyte (PBL) gene expression as a biomarker of illness and treatment effect using the Affymetrix Human Gene ST1 platform in patients with metastatic renal cell carcinoma (mRCC) who received combined treatment with IL-2, interferon-?-2a and dendritic cell vaccine. We examined gene expression, cytokine levels in patient serum and lymphocyte subsets as determined by flow cytometry (FCM). Pre-treatment PBLs from patients with mRCC exhibit a gene expression profile and serum cytokine profile consistent with inflammation and proliferation not found in healthy donors (HD). PBL gene expression from patients with mRCC showed increased mRNA of genes involved with T-cell and TREG-cell activation pathways, which was also reflected in lymphocyte subset distribution. Overall, PBL gene expression post-treatment (POST) was not significantly different than pre-treatment (PRE). Nevertheless, treatment related changes in gene expression (post-treatment minus pre-treatment) revealed an increased expression of T-cell and B-cell receptor signaling pathways in responding (R) patients compared to non-responding (NR) patients. In addition, we observed down-regulation of TREG-cell pathways post-treatment in R vs. NR patients. While exploratory in nature, this study supports the hypothesis that enhanced inflammatory cytotoxic pathways coupled with blunting of the regulatory pathways is necessary for effective anti-cancer activity associated with immune therapy. This type of analysis can potentially identify additional immune therapeutic targets in patients with mRCC.This work was supported by grants from the National Institutes of Health (RO1 CA5648, R21CA112761, P20RR016437, and P30CA023108)
Mast Cell Diseases in Practice and Research: Issues and Perspectives Raised by Patients and Their Recommendations to the Scientific Community and Beyond
Background: Since 2010, patients and physicians have collaborated to understand unmet needs of patients with mast cell diseases, incorporating mastocytosis and mast cell activation disorders, which include mast cell activation syndromes. Objective: This Open Innovation in Science project aims to expand understanding of the needs of patients affected by mast cell diseases, and encourage global communication among patient advocacy groups, physicians, researchers, industry, and government. A major aim is to support the scientific community's efforts to improve diagnosis, management, therapy, and patients’ quality of life by addressing unmet needs. Methods: In collaboration with mast cell disease specialists, 13 patient advocacy groups from 12 countries and regions developed lists of top patient needs. A core team of leaders from patient advocacy groups collected and analyzed the data and proposed possible actions to address patient needs. Results: Findings identified similarities and differences among participating countries in unmet needs between patients with mastocytosis and those with mast cell activation syndromes. Issues emphasized struggles relating to the nature and rarity of mast cell diseases, their impact on quality of life, the diagnostic process, access to appropriate care, more effective treatment, and the need for research. Conclusions: Solutions vary across countries because situations differ, in particular regarding the existence of and access to centers of excellence and reference centers. Multifaceted mast cell activation syndrome barriers necessitate innovative approaches to improve access to appropriate care. The outcomes of this project should greatly support scientists and clinicians in their efforts to improve diagnosis, management, and treatment of patients with mastocytosis and mast cell activation disorders.The authors thank Tania Bray, Jan Hempstead, Heather
Mayne, Joanne Mulder-Brambleby, and Irene Wilson for their
supporting contributions, and all patients and families affected
by MCDs, who shared their needs and concerns for development
of this project. Authors involved in study conception and design
were P. Valent, S.V. Jennings, C.C. Finnerty, J.S. Hobart, M.
Martín-Martínez, K.A. Sinclair, V.M. Slee, J. Agopian, C. Akin,
I. Álvarez-Twose, P. Bonadonna, A.A. Bowman, K. Brockow, H.
Bumbea, C. de Haro, J.S. Fok, K. Hartmann, N. Hegmann, O.
Hermine, M. Kalisiak, C.H. Katelaris, J. Kurz, P. Marcis, D.
Mayne, D. Mendoza, A. Moussy, G. Mudretzkyj, N. Nidelea
Vaia, M. Niedoszytko, H. Oude Elberink, A. Orfao, D.H.
Radia, S. Rosenmeier, E. Ribada, W. Schinhofen, J. Schwaab, F.
Siebenhaar, M. Triggiani, G. Tripodo, R. Velazquez, Y. Wielink,
F. Wimazal, T. Yigit, and C. Zubrinich. Authors involved in acquisition and review of data were S.V. Jennings, C.C. Finnerty,
J.S. Hobart, M. Martín-Martínez, K.A. Sinclair, V.M. Slee, J.
Agopian, C. Akin, I. Álvarez-Twose, P. Bonadonna, A.A.
Bowman, K. Brockow, H. Bumbea, C. de Haro, J.S. Fok, K.
Hartmann, N. Hegmann, O. Hermine, M. Kalisiak, C.H.
Katelaris, J. Kurz, P. Marcis, D. Mayne, D. Mendoza, A.
Moussy, G. Mudretzkyj, N. Nidelea Vaia, M. Niedoszytko, H.
Oude Elberink, A. Orfao, D.H. Radia, S. Rosenmeier, E. Ribada, W. Schinhofen, J. Schwaab, F. Siebenhaar, M. Triggiani, G.
Tripodo, R. Velazquez, Y. Wielink, F. Wimazal, T. Yigit, C.
Zubrinich, and P. Valent. The Core Group (analysis and interpretation of data and drafting of the manuscript) include S.V.
Jennings, C.C. Finnerty, J.S. Hobart, M. Martín-Martínez, K.A.
Sinclair, and V.M. Slee. Critical revision was performed by S.V.
Jennings, C.C. Finnerty, J.S. Hobart, M. Martín-Martínez, K.A.
Sinclair, V.M. Slee, J. Agopian, C. Akin, I. Álvarez-Twose, P.
Bonadonna, A.A. Bowman, K. Brockow, H. Bumbea, C. de
Haro, J.S. Fok, K. Hartmann, N. Hegmann, O. Hermine, M.
Kalisiak, C.H. Katelaris, J. Kurz, P. Marcis, D. Mayne, D.
Mendoza, A. Moussy, G. Mudretzkyj, N. Nidelea Vaia, M.
Niedoszytko, H. Oude Elberink, A. Orfao, D.H. Radia, S.
Rosenmeier, E. Ribada, W. Schinhofen, J. Schwaab, F. Siebenhaar, M. Triggiani, G. Tripodo, R. Velazquez, Y. Wielink, F Wimazal, T. Yigit, C. Zubrinich, and P. Valent
rs495139 in the TYMS-ENOSF1 Region and Risk of Ovarian Carcinoma of Mucinous Histology
Thymidylate synthase (TYMS) is a crucial enzyme for DNA synthesis. TYMS expression is regulated by its antisense mRNA, ENOSF1. Disrupted regulation may promote uncontrolled DNA synthesis and tumor growth. We sought to replicate our previously reported association between rs495139 in the TYMS-ENOSF1 3' gene region and increased risk of mucinous ovarian carcinoma (MOC) in an independent sample. Genotypes from 24,351 controls to 15,000 women with invasive OC, including 665 MOC, were available. We estimated per-allele odds ratios (OR) and 95% confidence intervals (CI) using unconditional logistic regression, and meta-analysis when combining these data with our previous report. The association between rs495139 and MOC was not significant in the independent sample (OR = 1.09; 95% CI = 0.97-1.22; p = 0.15; N = 665 cases). Meta-analysis suggested a weak association (OR = 1.13; 95% CI = 1.03-1.24; p = 0.01; N = 1019 cases). No significant association with risk of other OC histologic types was observed (p = 0.05 for tumor heterogeneity). In expression quantitative trait locus (eQTL) analysis, the rs495139 allele was positively associated with ENOSF1 mRNA expression in normal tissues of the gastrointestinal system, particularly esophageal mucosa (r = 0.51, p = 1.7 x 10(-28)), and nonsignificantly in five MOC tumors. The association results, along with inconclusive tumor eQTL findings, suggest that a true effect of rs495139 might be small.Peer reviewe
Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor
The international Testicular Cancer Consortium (TECAC) combined five published genome-wide association studies of testicular germ cell tumor (TGCT; 3,558 cases and 13,970 controls) to identify new susceptibility loci. We conducted a fixed-effects meta-analysis, including, to our knowledge, the first analysis of the X chromosome. Eight new loci mapping to 2q14.2, 3q26.2, 4q35.2, 7q36.3, 10q26.13, 15q21.3, 15q22.31, and Xq28 achieved genome-wide significance (P < 5 × 10−8). Most loci harbor biologically plausible candidate genes. We refined previously reported associations at 9p24.3 and 19p12 by identifying one and three additional independent SNPs, respectively. In aggregate, the 39 independent markers identified to date explain 37% of father-to-son familial risk, 8% of which can be attributed to the 12 new signals reported here. Our findings substantially increase the number of known TGCT susceptibility alleles, move the field closer to a comprehensive understanding of the underlying genetic architecture of TGCT, and provide further clues to the etiology of TGCT
The instrument suite of the European Spallation Source
An overview is provided of the 15 neutron beam instruments making up the initial instrument suite of the
European Spallation Source (ESS), and being made available to the neutron user community. The ESS neutron
source consists of a high-power accelerator and target station, providing a unique long-pulse time structure
of slow neutrons. The design considerations behind the time structure, moderator geometry and instrument
layout are presented.
The 15-instrument suite consists of two small-angle instruments, two reflectometers, an imaging beamline,
two single-crystal diffractometers; one for macromolecular crystallography and one for magnetism, two powder
diffractometers, and an engineering diffractometer, as well as an array of five inelastic instruments comprising
two chopper spectrometers, an inverse-geometry single-crystal excitations spectrometer, an instrument for vibrational
spectroscopy and a high-resolution backscattering spectrometer. The conceptual design, performance
and scientific drivers of each of these instruments are described.
All of the instruments are designed to provide breakthrough new scientific capability, not currently
available at existing facilities, building on the inherent strengths of the ESS long-pulse neutron source of high
flux, flexible resolution and large bandwidth. Each of them is predicted to provide world-leading performance
at an accelerator power of 2 MW. This technical capability translates into a very broad range of scientific
capabilities. The composition of the instrument suite has been chosen to maximise the breadth and depth
of the scientific impact o
No evidence that genetic variation in the myeloid-derived suppressor cell pathway influences ovarian cancer survival
BACKGROUND: The precise mechanism by which the immune system is adversely affected in cancer patients remains poorly understood, but the accumulation of immune suppressive/pro-tumorigenic myeloid-derived suppressor cells (MDSCs) is thought to be one prominent mechanism contributing to immunologic tolerance of malignant cells in epithelial ovarian cancer (EOC). To this end, we hypothesized genetic variation in MDSC pathway genes would be associated with survival after EOC diagnoses. METHODS: We measured the hazard of death due to EOC within 10 years of diagnosis, overall and by invasive subtype, attributable to SNPs in 24 genes relevant in the MDSC pathway in 10,751 women diagnosed with invasive EOC. Versatile Gene-based Association study (VEGAS) and the Admixture Likelihood method (AML), were used to test gene and pathway associations with survival. RESULTS: We did not identify individual SNPs that were significantly associated with survival after correction for multiple testing (p<3.5 x 10-5), nor did we identify significant associations between the MDSC pathway overall, or the 24 individual genes and EOC survival. CONCLUSIONS: In this well-powered analysis, we observed no evidence that inherited variations in MDSC-associated SNPs, individual genes, or the collective genetic pathway contributed to EOC survival outcomes. IMPACT: Common inherited variation in genes relevant to MDSCs were not associated with survival in women diagnosed with invasive EOC
- …