291 research outputs found
Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe
Chiral magnetic interactions induce complex spin textures including helical
and conical spin waves, as well as particle-like objects such as magnetic
skyrmions and merons. These spin textures are the basis for innovative device
paradigms and give rise to exotic topological phenomena, thus being of interest
for both applied and fundamental sciences. Present key questions address the
dynamics of the spin system and emergent topological defects. Here we analyze
the micromagnetic dynamics in the helimagnetic phase of FeGe. By combining
magnetic force microscopy, single-spin magnetometry, and
Landau-Lifschitz-Gilbert simulations we show that the nanoscale dynamics are
governed by the depinning and subsequent motion of magnetic edge dislocations.
The motion of these topologically stable objects triggers perturbations that
can propagate over mesoscopic length scales. The observation of stochastic
instabilities in the micromagnetic structure provides new insight to the
spatio-temporal dynamics of itinerant helimagnets and topological defects, and
discloses novel challenges regarding their technological usage
Temporal and regional intestinal changes in permeability, tight junction, and cytokine gene expression following ovariectomy-induced estrogen deficiency
The work presented within this study was funded in part by NCCIH (R01AT007695) and NIDDK (R01DK101050Peer reviewedPublisher PD
Detection of Topological Spin Textures via Nonlinear Magnetic Responses
Topologically nontrivial spin textures, such as skyrmions and dislocations, display emergent electrodynamics and can be moved by spin currents over macroscopic distances. These unique properties and their nanoscale size make them excellent candidates for the development of next-generation race-track memory and unconventional computing. A major challenge for these applications and the investigation of nanoscale magnetic structures in general is the realization of suitable detection schemes. We study magnetic disclinations, dislocations, and domain walls in FeGe and reveal pronounced responses that distinguish them from the helimagnetic background. A combination of magnetic force microscopy (MFM) and micromagnetic simulations links the response to the local magnetic susceptibility, that is, characteristic changes in the spin texture driven by the MFM tip. On the basis of the findings, which we explain using nonlinear response theory, we propose a read-out scheme using superconducting microcoils, presenting an innovative approach for detecting topological spin textures and domain walls in device-relevant geometries
Resonant Spin Excitation in an Overdoped High Temperature Superconductor
An inelastic neutron scattering study of overdoped Bi_2Sr_2CaCu_2O_{8+\delta}
$ (T_c = 83 K) has revealed a resonant spin excitation in the superconducting
state. The mode energy is E_res=38 meV, significantly lower than in optimally
doped Bi_2Sr_2CaCu_2O_{8+\delta} (T_c = 91 K, E_ res =43 meV). This
observation, which indicates a constant ratio E_res /k_B T_c \sim 5.4, helps
resolve a long-standing controversy about the origin of the resonant spin
excitation in high-temperature superconductors.Comment: final version: PRL 86, 1610 (2001
Rest-Mediated Regulation of Extracellular Matrix Is Crucial for Neural Development
Neural development from blastocysts is strictly controlled by intricate transcriptional programmes that initiate the down-regulation of pluripotent genes, Oct4, Nanog and Rex1 in blastocysts followed by up-regulation of lineage-specific genes as neural development proceeds. Here, we demonstrate that the expression pattern of the transcription factor Rest mirrors those of pluripotent genes during neural development from embryonic stem (ES) cells and an early abrogation of Rest in ES cells using a combination of gene targeting and RNAi approaches causes defects in this process. Specifically, Rest ablation does not alter ES cell pluripotency, but impedes the production of Nestin+ neural stem cells, neural progenitor cells and neurons, and results in defective adhesion, decrease in cell proliferation, increase in cell death and neuronal phenotypic defects typified by a reduction in migration and neurite elaboration. We also show that these Rest-null phenotypes are due to the dysregulation of its direct or indirect target genes, Lama1, Lamb1, Lamc1 and Lama2 and that these aberrant phenotypes can be rescued by laminins
Testing a communication assessment tool for ethically sensitive scenarios: Protocol of a validation study
Background: Although well-designed instruments to assess communication during medical interviews and complex encounters exist, assessment tools that differentiate between communication, empathy, decision-making, and moral judgment are needed to assess different aspects of communication during situations defined by ethical conflict. To address this need, we developed an assessment tool that differentiates competencies associated with practice in ethically challenging situations. The competencies are grouped into three distinct categories
Self‐pollination in island and mainland populations of the introduced hummingbird‐pollinated plant, Nicotiana glauca (Solanaceae)
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142032/1/ajb20672.pd
REST is a hypoxia-responsive transcriptional repressor
Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia
Interruption of intrachromosomal looping by CCCTC binding factor decoy proteins abrogates genomic imprinting of human insulin-like growth factor II
CCCTC binding factor (CTCF) mutants that cannot bind components of the polycomb repressive complex-2 (PRC2) do not form the chromatin loops that regulate monoallelic gene expression
The Evolution of Epigenetic Regulators CTCF and BORIS/CTCFL in Amniotes
CTCF is an essential, ubiquitously expressed DNA-binding protein responsible for insulator function, nuclear architecture, and transcriptional control within vertebrates. The gene CTCF was proposed to have duplicated in early mammals, giving rise to a paralogue called “brother of regulator of imprinted sites” (BORIS or CTCFL) with DNA binding capabilities similar to CTCF, but testis-specific expression in humans and mice. CTCF and BORIS have opposite regulatory effects on human cancer-testis genes, the anti-apoptotic BAG1 gene, the insulin-like growth factor 2/H19 imprint control region (IGF2/H19 ICR), and show mutually exclusive expression in humans and mice, suggesting that they are antagonistic epigenetic regulators. We discovered orthologues of BORIS in at least two reptilian species and found traces of its sequence in the chicken genome, implying that the duplication giving rise to BORIS occurred much earlier than previously thought. We analysed the expression of CTCF and BORIS in a range of amniotes by conventional and quantitative PCR. BORIS, as well as CTCF, was found widely expressed in monotremes (platypus) and reptiles (bearded dragon), suggesting redundancy or cooperation between these genes in a common amniote ancestor. However, we discovered that BORIS expression was gonad-specific in marsupials (tammar wallaby) and eutherians (cattle), implying that a functional change occurred in BORIS during the early evolution of therian mammals. Since therians show imprinting of IGF2 but other vertebrate taxa do not, we speculate that CTCF and BORIS evolved specialised functions along with the evolution of imprinting at this and other loci, coinciding with the restriction of BORIS expression to the germline and potential antagonism with CTCF
- …