5,972 research outputs found

    Dynamic Model and Phase Transitions for Liquid Helium

    Full text link
    This article presents a phenomenological dynamic phase transition theory -- modeling and analysis -- for superfluids. As we know, although the time-dependent Ginzburg-Landau model has been successfully used in superconductivity, and the classical Ginzburg-Landau free energy is still poorly applicable to liquid helium in a quantitative sense. The study in this article is based on 1) a new dynamic classification scheme of phase transitions, 2) new time-dependent Ginzburg-Landau models for general equilibrium transitions, and 3) the general dynamic transition theory. The results in this article predict the existence of a unstable region H, where both solid and liquid He II states appear randomly depending on fluctuations and the existence of a switch point M on the lambda-curve, where the transitions changes types

    Transmural intestinal wall permeability in severe ischemia after enteral protease inhibition.

    Get PDF
    In intestinal ischemia, inflammatory mediators in the small intestine's lumen such as food byproducts, bacteria, and digestive enzymes leak into the peritoneal space, lymph, and circulation, but the mechanisms by which the intestinal wall permeability initially increases are not well defined. We hypothesize that wall protease activity (independent of luminal proteases) and apoptosis contribute to the increased transmural permeability of the intestine's wall in an acutely ischemic small intestine. To model intestinal ischemia, the proximal jejunum to the distal ileum in the rat was excised, the lumen was rapidly flushed with saline to remove luminal contents, sectioned into equal length segments, and filled with a tracer (fluorescein) in saline, glucose, or protease inhibitors. The transmural fluorescein transport was determined over 2 hours. Villi structure and epithelial junctional proteins were analyzed. After ischemia, there was increased transmural permeability, loss of villi structure, and destruction of epithelial proteins. Supplementation with luminal glucose preserved the epithelium and significantly attenuated permeability and villi damage. Matrix metalloproteinase (MMP) inhibitors (doxycycline, GM 6001), and serine protease inhibitor (tranexamic acid) in the lumen, significantly reduced the fluorescein transport compared to saline for 90 min of ischemia. Based on these results, we tested in an in-vivo model of hemorrhagic shock (90 min 30 mmHg, 3 hours observation) for intestinal lesion formation. Single enteral interventions (saline, glucose, tranexamic acid) did not prevent intestinal lesions, while the combination of enteral glucose and tranexamic acid prevented lesion formation after hemorrhagic shock. The results suggest that apoptotic and protease mediated breakdown cause increased permeability and damage to the intestinal wall. Metabolic support in the lumen of an ischemic intestine with glucose reduces the transport from the lumen across the wall and enteral proteolytic inhibition attenuates tissue breakdown. These combined interventions ameliorate lesion formation in the small intestine after hemorrhagic shock

    Bulk properties of light deformed nuclei derived from a medium-modified meson-exchange interaction

    Get PDF
    Deformed Hartree-Fock-Bogoliubov calculations for finite nuclei are carried out. As residual interaction, a Brueckner G-matrix derived from a meson-exchange potential is taken. Phenomenological medium modifications of the meson masses are introduced. The binding energies, radii, and deformation parameters of the Carbon, Oxygen, Neon, and Magnesium isotope chains are found to be in good agreement with the experimental data.Comment: 10 pages, LaTeX2e, elsart, 4 eps-figures includes with graphic

    Some Secrets of Fluorescent Proteins: Distinct Bleaching in Various Mounting Fluids and Photoactivation of cyan fluorescent proteins at YFP-Excitation

    Get PDF
    Background
The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins.

Methodology/Principal Findings
When we applied a commonly used FRET microscopy technique - the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10 - 15% after illumination at the YFP-excitation wavelength – a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor.

Conclusions/Significance
Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions

    Recovery of the persistent current induced by the electron-electron interaction in mesoscopic metallic rings

    Full text link
    Persistent currents in mesoscopic metallic rings induced by static magnetic fields are investigated by means of a Hamiltonian which incorporates diagonal disorder and the electron-electron interaction through a Hubbard term (UU). Correlations are included up to second order perturbation theory which is shown to work accurately for UU of the order of the hopping integral. If disorder is not very strong, interactions increase the current up to near its value for a clean metal. Averaging over ring lengths eliminates the first Fourier component of the current and reduces its value, which remains low after interactions are included.Comment: uuencoded gzipped tar file containing the manuscript (tex file) and four figures (postscript files). Accepted for publication in Solid State Communications. Send e-mail to: [email protected]

    Surrounding species diversity improves subtropical seedlings’ carbon dynamics

    Get PDF
    Increasing biodiversity has been linked to higher primary productivity in terrestrial ecosystems. However, the underlying ecophysiological mechanisms remain poorly understood. We investigated the effects of surrounding species richness (monoculture, two- and four-species mixtures) on the ecophysiology of Lithocarpus glaber seedlings in experimental plots in subtropical China. A natural rain event isotopically labelled both the water uptaken by the L.glaber seedlings and the carbon in new photoassimilates through changes of photosynthetic discrimination. We followed the labelled carbon (C) and oxygen (O) in the plant-soil-atmosphere continuum. We measured gas-exchange variables (C assimilation, transpiration and above- and belowground respiration) and C-13 in leaf biomass, phloem, soil microbial biomass, leaf- and soil-respired CO2 as well as O-18 in leaf and xylem water. The C-13 signal in phloem and respired CO2 in L.glaber in monoculture lagged behind those in species mixture, showing a slower transport of new photoassimilates to and through the phloem in monoculture. Furthermore, leaf-water O-18 enrichment above the xylem water in L.glaber increased after the rain in lower diversity plots suggesting a lower ability to compensate for increased transpiration. Lithocarpus glaber in monoculture showed higher C assimilation rate and water-use efficiency. However, these increased C resources did not translate in higher growth of L.glaber in monoculture suggesting the existence of larger nongrowth-related C sinks in monoculture. These ecophysiological responses of L.glaber, in agreement with current understanding of phloem transport are consistent with a stronger competition for water resources in monoculture than in species mixtures. Therefore, increasing species diversity in the close vicinity of the studied plants appears to alleviate physiological stress induced by water competition and to counterbalance the negative effects of interspecific competition on assimilation rates for L.glaber by allowing a higher fraction of the C assimilated to be allocated to growth in species mixture than in monoculture.Peer reviewe

    Surrounding species diversity improves subtropical seedlings’ carbon dynamics

    Full text link
    Increasing biodiversity has been linked to higher primary productivity in terrestrial ecosystems. However, the underlying ecophysiological mechanisms remain poorly understood. We investigated the effects of surrounding species richness (monoculture, two- and four-species mixtures) on the ecophysiology of Lithocarpus glaber seedlings in experimental plots in subtropical China. A natural rain event isotopically labelled both the water uptaken by the L. glaber seedlings and the carbon in new photoassimilates through changes of photosynthetic discrimination. We followed the labelled carbon (C) and oxygen (O) in the plant–soil–atmosphere continuum. We measured gas-exchange variables (C assimilation, transpiration and above- and belowground respiration) and δ13C in leaf biomass, phloem, soil microbial biomass, leaf- and soil-respired CO2 as well as δ18O in leaf and xylem water. The 13C signal in phloem and respired CO2 in L. glaber in monoculture lagged behind those in species mixture, showing a slower transport of new photoassimilates to and through the phloem in monoculture. Furthermore, leaf-water 18O enrichment above the xylem water in L. glaber increased after the rain in lower diversity plots suggesting a lower ability to compensate for increased transpiration. Lithocarpus glaber in monoculture showed higher C assimilation rate and water-use efficiency. However, these increased C resources did not translate in higher growth of L. glaber in monoculture suggesting the existence of larger nongrowth-related C sinks in monoculture. These ecophysiological responses of L. glaber, in agreement with current understanding of phloem transport are consistent with a stronger competition for water resources in monoculture than in species mixtures. Therefore, increasing species diversity in the close vicinity of the studied plants appears to alleviate physiological stress induced by water competition and to counterbalance the negative effects of interspecific competition on assimilation rates for L. glaber by allowing a higher fraction of the C assimilated to be allocated to growth in species mixture than in monoculture

    Long-Range Correlations and the Momentum Distribution in Nuclei

    Get PDF
    The influence of correlations on the momentum distribution of nucleons in nuclei is evaluated starting from a realistic nucleon-nucleon interaction. The calculations are performed directly for the finite nucleus \,^{16}O making use of the Green's function approach. The emphasis is focused on the correlations induced by the excitation modes at low energies described within a model-space of shell-model configurations including states up to the sdg shell. Our analysis demonstrates that these long-range correlations do not produce any significant enhancement of the momentum distribution at high missing momenta and low missing energies. This is in agreement with high resolution (e,ep)(e,e'p) experiments for this nucleus. We also try to simulate the corresponding effects in large nuclei by quenching the energy-spacing between single-particle orbits. This yields a sizable enhancement of the spectral function at large momenta and small energy. Such behavior could explain the deviation of the momentum distribution from the mean field prediction, which has been observed in (e,ep)(e,e'p) experiments on heavy nuclei like 208^{208}Pb

    Weak ferromagnetism and internal magnetoelectric effect in LiFeP2_2O7_7

    Full text link
    The magnetic, thermodynamic, and pyroelectric properties of LiFeP2_2O7_7 single crystals are investigated with emphasis on the magnetoelectric interaction of the electrical polarization with the magnetic order parameter. The magnetic order below TN_N\simeq 27 K is found to be a canted antiferromagnet with a weak ferromagnetic component along the bb-axis. A sharp peak of the pyroelectric current at TN_N proves the strong internal magnetoelectric interaction resulting in a sizable polarization decrease at the onset of magnetic order. The magnetoelectric effect in external magnetic fields combines a linear and a quadratic field dependence below TN_N. Thermal expansion data show a large uniaxial magnetoelastic response and prove the existence of strong spin lattice coupling. LiFeP2_2O7_7 is a polar compound with a strong interaction of the magnetic order parameter with the electric polarization and the lattice.Comment: 8 pages, 9 figures, to be published in Phys. Rev.

    Stability and asynchrony of local communities but less so diversity increase regional stability of Inner Mongolian grassland

    Full text link
    Extending knowledge on ecosystem stability to larger spatial scales is urgently needed because present local-scale studies are generally ineffective in guiding management and conservation decisions of an entire region with diverse plant communities. We investigated stability of plant productivity across spatial scales and hierarchical levels of organization and analyzed impacts of dominant species, species diversity, and climatic factors using a multisite survey of Inner Mongolian grassland. We found that regional stability across distant local communities was related to stability and asynchrony of local communities. Using only dominant instead of all-species dynamics explained regional stability almost equally well. The diversity of all or only dominant species had comparatively weak effects on stability and synchrony, whereas a lower mean and higher variation of precipitation destabilized regional and local communities by reducing population stability and synchronizing species dynamics. We demonstrate that, for semi-arid temperate grassland with highly uneven species abundances, the stability of regional communities is increased by stability and asynchrony of local communities and these are more affected by climate rather than species diversity. Reduced amounts and increased variation of precipitation in the future may compromise the sustainable provision of ecosystem services to human well-being in this region
    corecore