52 research outputs found

    Micellar Nanocarriers of Hydroxytyrosol Are Protective against Parkinson’s Related Oxidative Stress in an In Vitro hCMEC/D3-SH-SY5Y Co-Culture System

    Get PDF
    Hydroxytyrosol (HT) is a natural phenolic antioxidant which has neuroprotective effects in models of Parkinson’s disease (PD). Due to issues such as rapid metabolism, HT is unlikely to reach the brain at therapeutic concentrations required for a clinical effect. We have previously developed micellar nanocarriers from Pluronic F68® (P68) and dequalinium (DQA) which have suitable characteristics for brain delivery of antioxidants and iron chelators. The aim of this study was to utilise the P68 + DQA nanocarriers for HT alone, or in combination with the iron chelator deferoxamine (DFO), and assess their physical characteristics and ability to pass the blood–brain barrier and protect against rotenone in a cellular hCMEC/D3-SH-SY5Y co-culture system. Both HT and HT + DFO formulations were less than 170 nm in size and demonstrated high encapsulation efficiencies (up to 97%). P68 + DQA nanoformulation enhanced the mean blood–brain barrier (BBB) passage of HT by 50% (p 0.0001, n = 6). This resulted in increased protection against rotenone induced cytotoxicity and oxidative stress by up to 12% and 9%, respectively, compared to the corresponding free drug treatments (p 0.01, n = 6). This study demonstrates for the first time the incorporation of HT and HT + DFO into P68 + DQA nanocarriers and successful delivery of these nanocarriers across a BBB model to protect against PD-related oxidative stress. These nanocarriers warrant further investigation to evaluate whether this enhanced neuroprotection is exhibited in in vivo PD models

    N-Acetylcysteine Nanocarriers Protect against Oxidative Stress in a Cellular Model of Parkinson's Disease.

    Get PDF
    Oxidative stress is a key mediator in the development and progression of Parkinson's disease (PD). The antioxidant n-acetylcysteine (NAC) has generated interest as a disease-modifying therapy for PD but is limited due to poor bioavailability, a short half-life, and limited access to the brain. The aim of this study was to formulate and utilise mitochondria-targeted nanocarriers for delivery of NAC alone and in combination with the iron chelator deferoxamine (DFO), and assess their ability to protect against oxidative stress in a cellular rotenone PD model. Pluronic F68 (P68) and dequalinium (DQA) nanocarriers were prepared by a modified thin-film hydration method. An MTT assay assessed cell viability and iron status was measured using a ferrozine assay and ferritin immunoassay. For oxidative stress, a modified cellular antioxidant activity assay and the thiobarbituric acid-reactive substances assay and mitochondrial hydroxyl assay were utilised. Overall, this study demonstrates, for the first time, successful formulation of NAC and NAC + DFO into P68 + DQA nanocarriers for neuronal delivery. The results indicate that NAC and NAC + DFO nanocarriers have the potential characteristics to access the brain and that 1000 μM P68 + DQA NAC exhibited the strongest ability to protect against reduced cell viability ( = 0.0001), increased iron ( = 0.0033) and oxidative stress ( ≤ 0.0003). These NAC nanocarriers therefore demonstrate significant potential to be transitioned for further preclinical testing for PD

    Dry Powder Formulation of Azithromycin for COVID-19 Therapeutics

    Get PDF
    Aim: The aim of this study is to develop dry powder formulations of azithromycin-loaded poly(lactic-co-glycolic acid) (PLGA) nanocomposite microparticles for pulmonary delivery to improve the low bioavailability of azithromycin. Methods: Double emulsion method was used to produce nanoparticles, which were then spray dried to form nanocomposite microparticles. Encapsulation efficiency and drug loading were analysed, and formulations were characterised by particle size, zeta potential, morphology, crystallinity and in-vitro aerosol dispersion performance. Results: The addition of chitosan changed the neutrally-charged azithromycin only formulation to positively-charged nanoparticles. However, the addition of chitosan also increased the particle size of the formulations. It was observed in the NGI® data that there is an improvement in dispersibility of the chitosan-related formulations. Conclusion: It was demonstrated in this study that all dry powder formulations were able to deliver azithromycin to the deep lung regions, which suggests the potential of using azithromycin via pulmonary drug delivery as an effective method to treat COVID-19

    Dry powder formulation of azithromycin for COVID-19 therapeutics

    Get PDF
    Aim: The aim of this study is to develop dry powder formulations of azithromycin-loaded poly(lactic-co-glycolic acid) (PLGA) nanocomposite microparticles for pulmonary delivery to improve the low bioavailability of azithromycin. Methods: Double emulsion method was used to produce nanoparticles, which were then spray dried to form nanocomposite microparticles. Encapsulation efficiency and drug loading were analysed, and formulations were characterised by particle size, zeta potential, morphology, crystallinity and in-vitro aerosol dispersion performance. Results: The addition of chitosan changed the neutrally-charged azithromycin only formulation to positively-charged nanoparticles. However, the addition of chitosan also increased the particle size of the formulations. It was observed in the NGI® data that there is an improvement in dispersibility of the chitosan-related formulations. Conclusion: It was demonstrated in this study that all dry powder formulations were able to deliver azithromycin to the deep lung regions, which suggests the potential of using azithromycin via pulmonary drug delivery as an effective method to treat COVID-19

    Antioxidant and Antidiabetic Properties of a Thinned-Nectarine-Based Nanoformulation in a Pancreatic β-Cell Line

    Get PDF
    Pancreatic β-cells play a crucial role in maintaining glucose homeostasis, although they are susceptible to oxidative damage, which can ultimately impair their functionality. Thinned nectarines (TNs) have gained increasing interest due to their high polyphenol and abscisic acid (ABA) content, both of which possess antidiabetic properties. Nevertheless, the efficacy of these bioactive compounds may be compromised by limited stability and bioavailability in vivo. This study aimed to develop nanoformulations (NFs) containing pure ABA or a TN extract (TNE) at an equivalent ABA concentration. Subsequently, the insulinotropic and antioxidant potential of the NFs and their unformulated (free) forms were compared in MIN-6 pancreatic cells exposed to varying glucose (5.5 mM and 20 mM) and iron (100 µM) concentrations. NF-TNE treatment exhibited enhanced antioxidant activity compared to free TNE, while ABA-based groups showed no significant antioxidant activity. Moreover, MIN6 cells incubated with both high glucose and iron levels demonstrated significantly higher insulin AUC levels after treatment with all samples, with NF-TNE displaying the most pronounced effect. In conclusion, these results highlight the additional beneficial potential of TNE due to the synergistic combination of bioactive compounds and demonstrate the significant advantage of using a nanoformulation approach to further increase the benefits of this and similar phytobioactive molecules

    Potential of siRNA-Bearing Subtilosomes in the Treatment of Diethylnitrosamine-Induced Hepatocellular Carcinoma

    Get PDF
    Therapeutics, based on small interfering RNA (siRNA), have demonstrated tremendous potential for treating cancer. However, issues such as non-specific targeting, premature degradation, and the intrinsic toxicity of the siRNA, have to be solved before they are ready for use in translational medicines. To address these challenges, nanotechnology-based tools might help to shield siRNA and ensure its specific delivery to the target site. Besides playing a crucial role in prostaglandin synthesis, the cyclo-oxygenase-2 (COX-2) enzyme has been reported to mediate carcinogenesis in various types of cancer, including hepatocellular carcinoma (HCC). We encapsulated COX-2-specific siRNA in Bacillus subtilis membrane lipid-based liposomes (subtilosomes) and evaluated their potential in the treatment of diethylnitrosamine (DEN)-induced hepatocellular carcinoma. Our findings suggested that the subtilosome-based formulation was stable, releasing COX-2 siRNA in a sustained manner, and has the potential to abruptly release encapsulated material at acidic pH. The fusogenic property of subtilosomes was revealed by FRET, fluorescence dequenching, content-mixing assay, etc. The subtilosome-based siRNA formulation was successful in inhibiting TNF-α expression in the experimental animals. The apoptosis study indicated that the subtilosomized siRNA inhibits DEN-induced carcinogenesis more effectively than free siRNA. The as-developed formulation also suppressed COX-2 expression, which in turn up-regulated the expression of wild-type p53 and Bax on one hand and down-regulated Bcl-2 expression on the other. The survival data established the increased efficacy of subtilosome-encapsulated COX-2 siRNA against hepatocellular carcinoma

    Advanced nanostructured medical device combining mesenchymal cells and VEGF nanoparticles for enhanced engineered tissue vascularization.

    Get PDF
    AIM: Success of functional vascularized tissue repair depends on vascular support system supply and still remains challenging. Our objective was to develop a nanoactive implant enhancing endothelial cell activity, particularly for bone tissue engineering in the regenerative medicine field. MATERIALS & METHODS: We developed a new strategy of tridimensional implant based on cell-dependent sustained release of VEGF nanoparticles. These nanoparticles were homogeneously distributed within nanoreservoirs onto the porous scaffold, with quicker reorganization of endothelial cells. Moreover, the activity of this active smart implant on cells was also modulated by addition of osteoblastic cells. RESULTS & CONCLUSION: This sophisticated active strategy should potentiate efficiency of current therapeutic implants for bone repair, avoiding the need for bone substitutes

    Ascorbyl palmitate/DSPE-PEG nanocarriers for oral iron delivery: Preparation, characterisation and in vitro evaluation

    Get PDF
    The objective of this study was to encapsulate iron in nanocarriers formulated with ascorbyl palmitate and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine polyethylene glycol (DSPE-PEG) for oral delivery. Blank and iron (Fe) loaded nanocarriers were prepared by a modified thin film method using ascorbyl palmitate and DSPE-PEG. Surface charge of the nanocarriers was modified by the inclusion of chitosan (CHI) during the formulation process. Blank and iron loaded ascorbyl palmitate/DSPE nanocarriers were visualised by transmission electron microscopy (TEM) and physiochemical characterisations of the nanocarriers carried out to determine the mean particle size and zeta potential. Inclusion of chitosan imparted a net positive charge on the nanocarrier surface and also led to an increase in mean particle size. Iron entrapment in ascorbyl palmitate-Fe and ascorbyl palmitate-CHI-Fe nanocarriers was 67% and 76% respectively, suggesting a beneficial effect of chitosan on nanocarrier Fe entrapment. Iron absorption was estimated by measuring Caco-2 cell ferritin formation using ferrous sulphate as a reference standard. Iron absorption from ascorbyl palmitate-Fe (592.17 ± 21.12 ng/mg cell protein) and ascorbyl palmitate-CHI-Fe (800.12 ± 47.6 ng/mg, cell protein) nanocarriers was 1.35-fold and 1.5-fold higher than that from free ferrous sulphate, respectively (505.74 ± 23.73 ng/mg cell protein) (n = 6, p < 0.05). This study demonstrates for the first time preparation and characterisation of iron loaded ascorbyl palmitate/DSPE PEG nanocarriers, and that engineering of the nanocarriers with chitosan leads to a significant augmentation of iron absorption

    A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles

    Get PDF
    Iron (Fe) loaded solid lipid nanoparticles (SLN’s) were formulated using stearic acid and iron absorp-tion was evaluated in vitro using the cell line Caco-2 with intracellular ferritin formation as a marker ofiron absorption. Iron loading was optimised at 1% Fe (w/w) lipid since an inverse relation was observedbetween initial iron concentration and SLN iron incorporation efficiency. Chitosan (Chi) was included toprepare chitosan coated SLN’s. Particle size analysis revealed a sub-micron size range (300.3 ± 31.75 nmto 495.1 ± 80.42 nm), with chitosan containing particles having the largest dimensions. As expected,chitosan (0.1%, 0.2% and 0.4% w/v) conferred a net positive charge on the particle surface in a concen-tration dependent manner. For iron absorption experiments equal doses of Fe (20 �M) from selectedformulations (SLN-FeA and SLN-Fe-ChiB) were added to Caco-2 cells and intracellular ferritin proteinconcentrations determined. Caco-2 iron absorption from SLN-FeA (583.98 ± 40.83 ng/mg cell protein)and chitosan containing SLN-Fe-ChiB (642.77 ± 29.37 ng/mg cell protein) were 13.42% and 24.9% greaterthan that from ferrous sulphate (FeSO4) reference (514.66 ± 20.43 ng/mg cell protein) (p ≤ 0.05). Wedemonstrate for the first time preparation, characterisation and superior iron absorption in vitro fromSLN’s, suggesting the potential of these formulations as a novel system for oral iron delivery
    • …
    corecore