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1. Introduction 

The world health organisation ranks iron deficiency as the most pervasive nutritional disorder, 

affecting as much as 20% of the global population [1]. It is prevalent in developed as well as 

developing countries, although the incidence is greater in the latter, primarily due to socio-economic 

factors [1].  

 

Food fortification is generally recognised as a cost-effective and convenient approach to counter iron 

deficiency, and there is a substantial body of evidence that demonstrates the benefits of this approach 

[2]. The main requirements for an iron source to be used effectively as a fortificant is to have 

sufficiently high bioavailability without causing any undesirable sensory changes in the food vehicles 

such as flours, breakfast cereals, cereal-based complementary foods, salt, milk, and milk based 

products. This has proved particularly challenging, as iron salts such as ferrous sulphate are highly 

reactive to the food vehicle, whereas iron compounds that have a better compatibility profile such as 

electrolytic iron have been reported to have low bioavailability [3,4].  

 

Ascorbic acid is often included in iron fortified foods on account of its role as a promoter of non-haem 

iron absorption [5,6] and has been shown to increase the absorption of all current iron fortification 

compounds [7]. It is thought that this enhancing action is due to the ability of ascorbic acid to reduce 

ferric iron to the bioavailable ferrous form and/or its capacity to chelate ferrous iron forming a soluble 

ferrous ascorbate complex that is resistant to the effect of iron inhibitors. Indeed a 2:1 molar ratio of 

ascorbic acid to iron increases iron absorption by at least two-fold in adult women as well as infants 

fed fortified foods.  In case of phytate rich foods a minimum molar ration of 4:1 has been 

recommended [8,9]. Scheers and Sandberg investigated the mechanism of ascorbic acid on iron 

absorption in Caco-2 cells [10] .  A short term increase in protein expression of the iron transporter 

divalent metal transporter 1 (DMT-1) and the ferrireductase duodenal cytochrome b (Dcytb) were 

reported in the presence of ascorbic acid, suggesting a possible explanation for the enhancement in 

iron absorption observed in the presence of ascorbic acid in single meals. However, conventional 

ascorbic acid is highly unstable and rapidly undergoes deterioration upon exposure to air, water, light 

or heat [11,12]. These properties significantly limit its application as an absorption enhancer for iron 
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fortification products, particularly in case of flours and cereal products that are most commonly 

fortified. 

 

To counter these drawbacks various ascorbic acid derivatives such as ascorbic acid-2-glucoside and 

ascorbyl palmitate have been synthesised, aiming at retaining its antioxidant effect whilst having an 

improved thermal and oxidative stability profile. Ascorbyl palmitate is a palmitic acid ester of ascorbic 

acid that is lipophilic in nature and has been used as an excipient in the cosmetic industry as a stable 

form of ascorbic acid [13]. Recently, Pizarro and co-workers investigated ascorbyl palmitate as an 

enhancer of iron absorption from iron fortified bread [14]. Wheat flour was fortified with ferrous 

sulphate with and without the addition of ascorbyl palmitate and then used to bake bread that was 

administered to human subjects. Inclusion of ascorbyl palmitate at a molar ratio of 2:1 and 4:1 

significantly enhanced iron absorption from the fortified flour. These results demonstrate its activity as 

an enhancer of iron absorption in food vehicles, although the high organoleptic reactivity of free 

ferrous iron would remain an issue that might limit the utility of this approach.  

 

Due to its hydrophobic nature ascorbyl palmitate requires the ampiphilic derivative polyethylene glycol 

grafted 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE-PEG) to spontaneously form 

vesicle structures in an aqueous medium [15]. The nanocarriers thus formed provide a suitable 

platform for incorporation of active ingredients, and previous studies have successfully demonstrated 

the use of such vesicles as carriers for a hydrophobic drugs including Amphotericin B and  

azidothymidine [16]. An addition motivation to use this specific nanocarrier system was to employ 

ascorbyl palmitate prinicipally as an enhancer of iron absorption. We hypothesised that the further 

inclusion of chitosan, a known mucoadhesive, in these nanocarriers would lead to a greater 

enhancement of iron absorption. This would create a unique delivery system wherein the material 

used for nanocarrier formulation would also act as an absorption enhancer for iron.  

  

Lo Nostro et al. first demonstrated the ability of ampiphilic ascorbic acid esters to self aggregate and 

form micellar structures in an aqueous media [17]. The nanocarriers retained the antioxidant activity 

due to the presence of ascorbyl moiety in the polar head group, while the inner micellar provides a 

hydrophobic core. The ascorbic acid ester ascorbyl palmitate has been investigated for similar 
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activity; however, vesicles were reported to form only in presence of cholesterol. PEG has been in 

use for several decades as a surfactant and for steric stabilisation and conjugation of ligands to drug 

nanocarriers [18]. DSPE-PEG is a PEGylated phospholipid frequently used to develop drug 

nanocarrier systems due to its ability to form micellar rather than bilayered structures by self assembly 

in a suitable aqueous environment [19].  

 

Microencapsulation technology has been used widely in the pharmaceutical industry for coating and 

delivery of oral and parenteral drugs. This approach has also been successfully utilised in the food 

industry to protect a core active ingredient that is entrapped within an outer layer of lipidic or 

polymeric material thus preventing it from interacting with other food components as well as the 

surrounding environment [20]. A wide range of approaches including lipid based systems have been 

explored previously for iron delivery [21-23].  The main limitation of these formulations is the 

thermodynamic instability due to the high lipid content, and drug leakage from the vesicles due to 

chemical instability [24]. Hermida et al.  recently prepared chitosan containing liposomes that 

demonstrated high iron loading and iron absorption in Caco-2 cells. Chitosan is a naturally occurring 

polysacchride that has been well characterised and studied extensively for drug delivery applications 

[26,27]. Chitosan is widely used in dietary supplement preparations, has a well established safety 

profile, and has Food & Drug Administration (FDA) approval for use in food applications [28-30]. 

 

Based on these rationales, this study aimed to formulate ascorbyl palmitate/DSPE nanocarriers for 

encapsulation of a hydrophilic molecule, ferrous sulphate, for oral iron delivery. Here we demonstrate 

for the first time formulation, characterisation and evaluation of in vitro iron absorption from ascorbyl 

palmitate and ascorbyl palmitate-chitosan (ascorbyl palmitate-CHI) loaded ferrous sulphate 

nanocarriers.  

 

2. Material and methods: 

2.1.Materials 

Ascorbyl palmitate was purchased from Sigma-Aldrich (Dorset, UK) and DSPE-PEG was from Lipoid 

(Steinhausen, Switzerland). All other chemicals and reagents were either analytical or cell culture 

grade, and were purchased from Sigma-Aldrich (Dorset, UK) unless otherwise stated. Chitosan 
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hydrochloride (HCL) was from Heppe Medical (Halle, Germany). Caco-2 cells were purchased from 

European Collection of Cell Cultures (ECACC, Salisbury, UK). Ferritin ELISA kit was from Ramco 

(ATI Atlas, Chichester, UK) and BCA protein assay kit was from Thermo Fisher Scientific 

(Northumberland, UK). Cell culture media, foetal calf serum (FCS) and reagents were from either 

Invitrogen (Loughborough, UK) or Lonza (Slough, UK). Cell culture plates (6-well and 96-well) and 

flasks were from Nunc (Roskilde, Denmark) and all other cell culture plasticware used was from 

Corning (Amsterdam, The Netherlands). All reagents used were prepared using ultrapure water 

(MilliQ; resistivity of 18.2 MΩ cm). Prior to use all glassware and utensils was soaked in 10% HCL and 

rinsed with ultrapure water to remove any potential traces of residual minerals. 

 

2.2. Preparation of iron loaded ascorbyl palmitate nanocarriers 

Ascorbyl palmitate nanocarriers were prepared by thin film hydration method as described previously, 

with minor modifications [31]. Briefly, ascorbyl palmitate and DSPE-PEG (1:1 molar ratio) were 

dissolved in chloroform in a round bottom flask. Dry lipid film was formed by removing the solvent 

under reduced pressure for 10 minutes at 60 °C using a rotary evaporator (Hei-VAP Advantage 

Rotary Evaporator, Heidolph, Schwabach, Germany). Any residual solvent was further removed by 

purging the lipid film with nitrogen gas.  The film was hydrated with a ferrous sulphate heptahydrate 

(FeSO4.7H2O) solution (1 mg/ml, pH 7.4) or MilliQ water (pH 7.4) for blank nanocarriers. For chitosan 

coated nanocarriers chitosan-HCL was added to the hydration solution. Hydration was carried out by 

hand shaking the flask vigorously in circular motion for 1 minute while maintaining at a constant 

temperature (60 °C) by keeping the flask immersed in a water bath. Ascorbyl palmitate nanocarriers 

were then stored in liquid nitrogen purged 10 ml glass vials at 4 °C. The preparations were coded 

ascorbyl palmitate, ascorbyl palmitate-Fe, ascorbyl palmitate-CHI and ascorbyl palmitate-CHI-Fe (Fe 

denoting iron loaded nanocarriers). 

 

2.3. Iron entrapment 

Iron entrapment in ascorbyl palmitate nanocarriers was determined by centrifugation followed by 

quantification analysis [32]. Aliquots of nanocarrier dispersions were subjected to ultracentrifugation 

(11336 g, 60 minutes, 4 ºC) in a refrigerated laboratory centrifuge (Heraeus Fresco 70, Thermo 

Fisher, UK). The supernatant was collected and iron concentrations determined using the iron 
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chelator ferrozine [33] as previously described , [34,35], and measuring the absorbance of the 

coloured complex spectrophotometrically at 562 using a microplate reader (VersaMax, Molecular 

Devices, USA) [33]. Measurements were repeated in triplicate, and results expressed as means ± 

standard deviations. 

Nanocarrier iron entrapment was calculated as per the following formula: 

 

Iron entrapment (%) =   (Ti - Fi / Ti) x 100 

                                   

Where Ti is the total iron added during formulation and Fi is the free (unentrapped) iron measured in 

supernatant. 

 

2.4. Size analysis 

Size analysis was carried out using Malvern Zetasizer Nano ZS (Malvern Instruments, UK). Three 

independent measurements were performed on each sample. The Fraunhofer model was used to 

analyze the results and the mean volume diameters (MVD) and standard deviations (SD) were 

calculated. 

 

2.5. Zeta potential measurements 

Zeta potential of ascorbyl palmitate nanocarriers was determined using an electrophoretic light-

scattering technique (Zetasizer Nano ZS, Malvern Instruments, UK). The nanodispersion was added 

to the ZetaMaster electrophoresis cell and electrophoretic mobility was measured. All analyses were 

carried out in triplicate. 

 

2.6. Transmission electron microscopy (TEM) 

For visualisation of ascorbyl palmitate nanocarriers a droplet of the nanodispersion diluted in water 

was added to a copper grid as a thin film. Phosphotungstic acid solution (2%) was used as a staining 

agent and nanocarriers imaged by transmission electron microscopy (Philips Biotwin CM120, Philips 

Co, The Netherlands). 

 

2.7. Cell culture 
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Caco-2 cells were obtained at passage 20 and used experimentally between passages 40 to 55. FCS 

supplemented Dulbeccos Modified Eagle Medium (DMEM) was used as culture medium. For iron 

absorption experiments cells were seeded onto 6-well plates at an initial seeding density of 1 x 104 

cells/cm2. Parallel 6-well plates were also seeded similarly to be used for assessment of cell viability 

prior to the commencement of the absorption experiment and following completion. Iron absorption 

experiments were carried after 24 h at day 13-15 post seeding by which time Caco-2 cells 

differentiate to a fully matured gastrointestinal (GI) tract phenotype. Cells were therefore cultured in 

media containing minimal amounts of iron 24 h prior to the experiment to ensure that cells form low 

levels of ferritin prior to the start of the experiments. Caco-2 cells were incubated with equivalent 

concentrations of iron from each of the formulations. Iron concentration of 20 µM was selected, based 

on previous studies that have shown this concentration to be optimum for iron  studies, since at higher 

concentrations a progressive decline in the iron  protein transporter DMT-1 takes place [36] . Under 

these conditions Caco-2 cells demonstrate maximal iron and therefore minute variations in iron 

between the various samples can be measured accurately in terms of the ferritin formed. Ferrous 

sulphate was used as a reference standard in our experiments. 

 

2.8. In vitro cytotoxicity 

Cytotoxicity of ascorbyl palmitate nanocarriers in Caco-2 cells was determined using the MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay [37]. Briefly, Caco-2 cells were seeded 

onto 96-well culture plates at an initial density of 1 x 104 cells/cm2. On day of experiment culture 

media was aspirated and replaced with phenol red free minimum essential media (MEM) containing 

ascorbyl palmitate nanocarriers (20µm, 50µM and 100 µM iron concentration). Following 48 h 

exposure 20 µl MTT reagent (5 mg/ml) was added to each well and the plates incubated for a further 

4 h in a cell culture incubator (at 37 °C in a 5% CO2). Media was then aspirated carefully and the 

formazan crystals formed were solubilised by adding Dimethyl sulfoxide (DMSO) and agitating the 

plates in an orbital shaker for 15 minutes. Absorbance was then measured spectroscopically at 550 

nm (VersaMax, Molecular devices, USA). Viability of control cells was considered 100% and that of 

test cells expressed as a percentage of control. 

 

2.9. Caco-2 iron absorption experiment 
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On day 13 post seeding cells were prepared for  experiment by aspirating growth media and washing 

Caco-2 cell monolayers three times with wash solution (140 mM NaCl, 5 mM KCl, 10 mM PIPES 

buffer, pH 6.7, 37 ºC) and then incubated in serum-free MEM for 24 hours. On day 14 test media was 

prepared by titrating MEM with 0.1 M HCL or 0.1 M NaOH to pH 5.8, which represents the 

physiological pH in the duodenum. Test media was then sterile filtered using a 0.2 µm filter unit, 

buffered with 2-(N-Morpholino) ethanesulfonic acid (MES, 10 mM) and aliquoted into individual falcon 

tubes. Samples from the test preparations were added to the test media to achieve a final 

concentration of 20 µM elemental iron for each condition. Prior to commencing iron absorption 

experiments trypan blue exclusion assay was carried out in a parallel 6-well plate to assess Caco-2 

cell viability (one well per condition). Caco-2 cells in test plates were washed three times with wash 

solution and then incubated with iron enriched test media (six wells per condition) for 2 hours at 37 ºC 

in a plate incubator rocking gently at 25 rpm. After incubation period test media was aspirated and 

cells washed twice with wash solution and finally with a removal solution (wash solution plus 5 µm Na 

hydrosulphite and 1 µm bathophenanthroline disulfonate) to remove any surface bound iron, as 

described previously [38]. Caco-2 cells were then incubated with fresh MEM for a further 24 hours in a 

cell culture incubator (37 ºC, 95% air and 5% CO2). Parallel 6-well plates were also incubated with 

test media and subjected to similar conditions (one well per condition). Caco-2 cell viability was 

assessed at the completion of the experiment using trypan blue dye exclusion assay. Following 24 

hours of incubation, media was aspirated and Caco-2 cells washed twice with wash buffer. Cells were 

harvested by addition of 350 µl lysis buffer (50 mM NaOH supplemented with 1 µg/ml protease 

inhibitor cocktail) per well for 40 minutes while rocking gently on a plate shaker (6 rpm). Cells were 

then scraped and the resultant lysate was pipetted into 0.5 ml microcentrifuge tubes and stored 

immediately at -20 ºC for further analysis. 

 

2.10. Ferritin and total protein quantification 

Total ferritin concentration of cell lysates was determined using a spectrophotometric ELISA kit 

following manufacturer’s protocol with a few modifications. Briefly, frozen cell lysates were centrifuged 

for 10 minutes (13226 g, 4 ºC) and the resultant supernatant was used for the assay.  A standard 

curve was generated using the standards provided (0, 6, 20, 60, 200, 2000 ng standard/ml). Samples 

and standards (30 µl each) were loaded in triplicate onto a 96-well plate and incubation steps carried 
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out as described in the protocol.  Absorbance was determined at 490 and 630 nm using a microplate 

reader (VersaMax, Molecular devices, USA). Protein content of Caco-2 cells was determined using 

the Pierce BCA kit following manufacturer’s protocol using the bovine serum albumin (BSA) stock (2 

mg/ml) provided in the kit as standard. All samples were assayed in duplicate. Ferritin concentration 

was standardised against total protein concentration and ng ferritin/ mg protein was considered an 

indice of iron and absorption by Caco-2 cells. 

 

2.11. Statistical analysis 

Data is presented as mean ± standard deviation (SD) and difference between samples was analyzed 

by one-way analyses of variance (ANOVA) followed by Tukey's post-hoc test using the PRISM 

software package (Version 4, Graphpad Software Inc., San Diego, USA). Results were considered 

significantly different if p ≤ 0.05. 

 

3. Results and Discussion 

3.1. Preparation and iron entrapment efficiency of ascorbyl palmitate nanocarriers  

In this study ascorbyl palmitate was combined with DSPE-PEG to formulate a novel carrier system to 

deliver iron for oral absorption.  The nanocarrier preparation methodology was similar to that of 

Moribe et al. using the thin film method, with the addition of chitosan to prepare ascorbyl palmitate-

CHI nanocarriers. This protocol was adhered to as the authors have reported the formation of stable 

nanocarriers that efficiently entrapped model drugs. Drug loaded and blank nanocarriers were size 

maintained and formed a suspension that did not exhibit phase separation on storage at 20 °C for one 

month. 

 

Iron entrapment in ascorbyl palmitate nanocarriers was determined by spectrophotometric analysis. 

The results are presented in Fig. 1. Prior to conducting these experiments optimisation experiments 

were carried out to determine the initial amount of iron to be added. It was observed that increasing 

the concentration of ferrous iron as a percentage (w/w) of the encapsulating material led to a gradual 

decrease in iron entrapment, with an initial iron loading at 10% concentration resulting in as little as 

3% entrapment [35]. Chitosan concentration in the nanocarrier was also optimised in a previous work 

performed by the authors [35]. This is in agreement with previous studies that have reported a 
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correlation between decreased iron entrapment and high initial ferrous iron concentration. It was 

suggested that the low iron entrapment was due to the strong electrolytic behaviour of ferrous 

sulphate that has an unfavourable effect upon electrostatic stability of the nanocarriers [22,39]. 

 

Initial iron loading was therefore established to be 1% w/w of total encapsulating material. Iron 

entrapment efficiency in ascorbyl palmitate-Fe nanocarriers was 67%, whereas iron entrapment 

efficiency in ascorbyl palmitate-CHI-Fe nanocarriers it was 76%; a 13% increase. Although chitosan is 

incorporated in nano and microparticle formulations as an absorption enhancer on basis of its 

mucoadhesive properties, several studies have reported an increase in drug entrapment upon its 

inclusion [40,41]. Iron is known to bring about the hydrolysis of phosholipid ester bonds leading to 

poor vesicle wall formation [25]. Chitosan coating of the carrier membrane might lead to the formation 

of a rigid nanocarrier wall microstructure. Xia et al. observed that the encapsulation efficiency of iron 

containing liposome increases almost 3.7-fold when a suitable iron chelator such as citric acid is used 

during formulation [39]. This can be attributed to the ability of the chelator to form a complex with iron 

thereby having a favourable effect upon its entrapment in the carrier. 

 

The interaction between iron and chitosan has been studied  previously  and the formation of a stable 

chitosan-iron complex has been reported [42]. The high iron entrapment observed in chitosan 

containing ascorbyl palmitate nanocarriers can therefore be attributed to the above phenomenon, 

either occurring in concert or independent of each other. 

 

3.2. Zeta potential 

Zeta potential is an essential parameter for characterisation of micro or nanoparticle delivery systems 

as it is a predictor of formulation stability as well as carrier interaction with cell membranes. Blank and 

iron loaded ascorbyl palmitate nanocarriers demonstrated a net negative charge of -34.26 ±1.45 mV 

and -3.49 ± 0.53 mV respectively (Table 1). As expected, inclusion of chitosan imparted a positive 

charge on blank and drug loaded nanocarriers (ascorbyl palmitate-CHI = 13.4 ± 0.42, ascorbyl 

palmitate-CHI-Fe = 2.42 ± 0.24), due the presence of positively charged amine groups in its structure. 

The net positive zeta potential values of ascorbyl palmitate-CHI nanocarriers suggests that chitosan 
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deposition takes place on the outer surface of the nanocarrier structures. Iron entrapment resulted in 

a shift in zeta potential of both ascorbyl palmitate-Fe and ascorbyl palmitate-CHI-Fe nanocarriers. 

 

3.3. Size analysis 

Particles size of all ascorbyl palmitate nanocarriers was found to be of submicron dimensions, ranging 

from 47 nm to 290 nm (Table 1). DSPE-PEG is a dispersing agent and its introduction in an aqueous 

media results in the formation of nanometre sized nanocarriers [43]. Our data is consistent with 

previous studies where ascorbyl palmitate-DSPE-PEG nanocarriers had a size range less than 300 

nm [16]. Ascorbyl palmitate-CHI and Ascorbyl palmitate-CHI–Fe nanocarriers had the largest particle 

size, having a mean diameter of 290.83 ± 43 nm and 97.15 ± 5.7 nm respectively. Chitosan is known 

to adsorb on the surface of lipid carriers, and previous studies have reported a similar increase in 

particle size upon its incorporation in the formulation [25]. [18]. A reduction in ascorbyl palmitate-CHI 

nanocarrier size following iron incorporation can possibly be attributed to the formation of a chitosan-

iron complex, as discussed earlier, that may result in complex deposition at the core of the carrier 

vesicle rather than the surface, and the consequent consolidation of nanocarrier size.  

 

Size is an important parameter that can influence the bioactivity as well as stability of the formulation. 

Particles size of a formulation is dependent upon its ultimate application. For delivery of certain small 

drugs molecules sub-100 nm particles are desired to enhance the residence time of the drug in the 

circulation by avoiding phagocytic clearance and hepatic filtration [44]. In the context of iron delivery 

the objective was primarily to formulate an iron carrier system that was physically stable and 

composed of particles of nanometre size range.   

 

3.4. Transmission electron microscopy (TEM) 

TEM micrographs (Fig. 2.) illustrate that iron loaded ascorbyl palmitate nanocarriers were uniformly 

spherical and had a dense appearance. Ascorbyl palmitate-CHI nanocarriers are less spherical, 

possibly due to some adsorption of chitosan on the nanocarrier surface. 

 

3.5. In vitro cytotoxicity 
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Caco-2 cells were incubated for 48 h with ascorbyl palmitate nanocarriers at varying iron 

concentrations. Results are shown in Fig. 3.  Iron loaded ascorbyl palmitate as well as ascorbyl 

palmitate-Chi nanocarriers did not demonstrate any significant reduction in cell viability as compared 

to control. In fact Caco-2 cells incubated with ascorbyl palmitate nanocarriers nanocarriers at high iron 

concentration (Fe =100 µM) exhibited a significant increase in Caco-2 cell viability. It is likely that 

Caco-2 cells incubated with these nanocarriers absorbed greater amounts of iron over an extended 

duration; the increased cell viabilities observed may therefore be attributed to the promoter effect of 

iron on cell growth and differentiation [45].  

 

3.6. Iron absorption from ascorbyl palmitate nanocarriers 

Ferritin concentrations were measured as an estimation of iron absorption in Caco-2 cells. This 

method is very sensitive, has been well characterised, and shows good correlation with human 

absorption data at this time point [46,47]. Caco-2 cells synthesise ferritin in response to their iron 

status as well as iron levels in their surrounding environment [38].  

Iron absorption from ascorbyl palmitate nanocarriers was higher than that from ferrous sulphate alone 

(Fig. 4.; p < 0.05). The highest level of iron absorption was from ascorbyl palmitate-CHI-Fe 

nanocarriers (800.12 ± 47.6 ng/mg cell protein); 1.35 fold/ 35.13 % (p < 0.05) higher than that from 

ascorbyl palmitate-Fe nanocarriers (592.17 ± 21.12 ng/mg cell protein), and 1.5 fold/ 58.4 % (p < 

0.05) higher than that from free ferrous sulphate (505.74 ± 23.73 ng/mg cell protein). These results 

are in agreement with Pizarro et al., who showed ascorbyl palmitate to be a strong enhancer of 

ferrous iron in fortified bread [14]. Ascorbyl palmitate retains the ascorbyl moiety of ascorbic acid in an 

esterified form that protects it from the poor thermal and oxidative stability characteristic of ascorbic 

acid.  

 

Chitosan is often used in drug delivery formulations as a permeation enhancer due to its 

mucoadhesive properties, which are attributed to its cationic polyelectrolyte structure allowing it to 

bind to negatively charged cell surfaces [48]. Chitosan coating or integration onto the surface of the 

drug carrier enhances its interaction with the cell membrane, thereby promoting cellular uptake [49] . 

Although the inclusion of chitosan has not been explored in DSPE-PEG based nanocarrier 

formulation, our results are in agreement with previous literature wherein a coating of chitosan on 
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liposome surfaces led to an increase in cellular uptake of the encapsulated material [50].  It has been 

suggested that positively charged chitosan exhibits strong electrostatic attraction with the negatively 

charged lipidic components of the vesicles resulting in a stable surface coating [51]. The presence of 

a chitosan on the surface of our ascorbyl palmitate nanocarriers was confirmed by zeta-potential 

studies (See Table 1).  

 

Caco-2 cells were used to simulate duodenal absorption and therefore the pH was adjusted to 5.8 

during the course of the experiment. Chitosan exerts maximal cell permeation effect in an acidic 

environment [52]. The pH in the duodenum region of the intestine is 5.8, and this provides an 

environment particularly suited for chitosan to act as a mucoadhesive, as the pH is close to its pKa 

value (5.5) [53]. Our results are in agreement with this; chitosan containing nanocarriers 

demonstrated high iron absorption, an effect that may be attributed to its mucoadhesive properties at 

the intestinal physiological pH. Chitosan inclusion in the nanocarriers therefore appears to exert an 

effect that complements and further augments the effects of ascorbyl palmitate on iron absorption in 

Caco-2 cells.  

  

The peristaltic movement of the small intestine propel the contents at a flow rate of 0.188 ml/second  

[54]. This provides a very limited window for nutrients to undergo absorption, before they are washed 

off into the large intestine to be processed for excretion. In the context of actual physiological 

conditions of oral absorption it is intriguing to speculate that our ascorbyl palmitate-CHI nanocarriers 

might bind to the mucosal cell surface thereby prolonging the retention time in this region potentially 

leading to increased accumulation and absorption. However, the current study does not address this 

phenomenon, and further studies involving a dynamic absorption system or an in vivo model would be 

required to examine this possibility. 

 

4. Conclusion 

This study reports for the first time the preparation and characterisation of iron loaded ascorbyl 

palmitate-DSPE-PEG- nanocarriers. Relatively high iron entrapment was observed in the nanocarrier 

preparations, with zeta potential analysis confirming the presence of a net positive charge on the 

surface of nanocarriers containing chitosan. Significantly higher iron absorption from ascorbyl 
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palmitate nanocarriers than ferrous sulphate alone suggests that the ascorbyl moiety may have a role 

in the increased iron absorption from these nanocarriers. However, it is not possible to delineate from 

the present data whether this increase in absorption is due to individual components of the carrier 

system, or due to higher uptake of the nanocarrier vehicle itself. Engineering the nanocarriers with 

chitosan not only leads to an enhancement in iron entrapment, but also a significant increase in iron 

absorption in Caco-2 cells. These results demonstrate the potential of ascorbyl palmitate nanocarriers 

as novel iron delivery vehicles for nutritional applications. 
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