202 research outputs found

    Terminal velocities of luminous, early-type SMC stars

    Full text link
    Ultraviolet spectra from the Space Telescope Imaging Spectrograph (STIS) are used to determine terminal velocities for 11 O and B-type giants and supergiants in the Small Magellanic Cloud (SMC) from the Si IV and C IV resonance lines. Using archival data from observations with the Goddard High-Resolution Spectrograph and the International Ultraviolet Explorer telescope, terminal velocities are obtained for a further five B-type supergiants. We discuss the metallicity dependence of stellar terminal velocities, finding no evidence for a significant scaling between Galactic and SMC metallicities for Teff < 30,000 K, consistent with the predictions of radiation driven wind theory for supergiant stars. A comparison of the v/vescv_\infty / v_{esc} ratio between the SMC and Galactic samples, while consistent with the above statement, emphasizes that the uncertainties in the distances to galactic O-stars are a serious obstacle to a detailed comparison with theory. For the SMC sample there is considerable scatter in this ratio at a given effective temperature, perhaps indicative of uncertainties in stellar masses.Comment: 28 pages, 8 figures, accepted by ApJ; minor revisions prior to acceptanc

    Spectral Modelling of Star-Forming Regions in the Ultraviolet: Stellar Metallicity Diagnostics for High Redshift Galaxies

    Full text link
    The chemical composition of high redshift galaxies is an important property which gives clues to their past history and future evolution and yet is difficult to measure with current techniques. In this paper we investigate new metallicity indicators, based upon the strengths of stellar photospheric features at rest-frame ultraviolet wavelengths. By combining the evolutionary spectral synthesis code Starburst99 with the output from the non-LTE model atmosphere code WM-basic, we have developed a code that can model the integrated ultraviolet stellar spectra of star-forming regions at metallicities between 1/20 and twice solar. We use our models to explore a number of spectral regions that are sensitive to metallicity and clean of other spectral features. The most promising metallicity indicator is an absorption feature between 1935 A and 2020 A, which arises from the blending of numerous Fe III transitions. We compare our model spectra to observations of two well studied high redshift star-forming galaxies, MS1512-cB58 (a Lyman break galaxy at z = 2.7276), and Q1307-BM1163 (a UV-bright galaxy at z = 1.411). The profiles of the photospheric absorption features observed in these galaxies are well reproduced by the models. In addition, the metallicities inferred from their equivalent widths are in good agreement with previous determinations based on interstellar absorption and nebular emission lines. Our new technique appears to be a promising alternative, or complement, to established methods which have only a limited applicability at high redshifts.Comment: 18 pages, 12 figures, accepted for publication in the Astrophysical Journa

    Prospective cohort study of procalcitonin levels in children with cancer presenting with febrile neutropenia

    Get PDF
    BACKGROUND: Febrile neutropenia (FNP) causes significant morbidity and mortality in children undergoing treatment for cancer. The development of clinical decision rules to help stratify risks in paediatric FNP patients and the use of inflammatory biomarkers to identify high risk patients is an area of recent research. This study aimed to assess if procalcitonin (PCT) levels could be used to help diagnose or exclude severe infection in children with cancer who present with febrile neutropenia, both as a single measurement and in addition to previously developed clinical decision rules. METHODS: This prospective cohort study of a diagnostic test included patients between birth and 18 years old admitted with febrile neutropenia to the Paediatric Oncology and Haematology Ward in Leeds between 1(st) October 2012 and 30(th) September 2013. Each admission with FNP was treated as a separate episode. Blood was taken for a procalcitonin level at admission with routine investigations. 'R' was used for statistical analysis. Likelihood ratios were calculated and multivariable logistic regression. RESULTS: Forty-eight episodes from 27 patients were included. PCT >2 ng/dL was strongly associated with increased risk of severe infection (likelihood ratio of 26 [95% CI 3.5, 190]). The data suggests that the clinical decision rules are largely ineffective at risk stratification, frequently over-stating the risk of individual episodes. High procalcitonin levels on admission are correlated with a greatly increased risk of severe infection. CONCLUSIONS: This study does not show a definitive benefit in using PCT in FNP though it supports further research on its use. The benefit of novel biomarkers has not been proven and before introducing new tests for patients it is important their benefit above existing features is proven, particularly due to the increasing importance of health economics

    B-type supergiants in the SMC: Rotational velocities and implications for evolutionary models

    Full text link
    High-resolution spectra for 24 SMC and Galactic B-type supergiants have been analysed to estimate the contributions of both macroturbulence and rotation to the broadening of their metal lines. Two different methodologies are considered, viz. goodness-of-fit comparisons between observed and theoretical line profiles and identifying zeros in the Fourier transforms of the observed profiles. The advantages and limitations of the two methods are briefly discussed with the latter techniques being adopted for estimated projected rotational velocities (\vsini) but the former being used to estimate macroturbulent velocities. Only one SMC supergiant, SK 191, shows a significant degree of rotational broadening (\vsini \simeq 90 \kms). For the remaining targets, the distribution of projected rotational velocities are similar in both our Galactic and SMC samples with larger values being found at earlier spectral types. There is marginal evidence for the projected rotational velocities in the SMC being higher than those in the Galactic targets but any differences are only of the order of 5-10 \kms, whilst evolutionary models predict differences in this effective temperature range of typically 20 to 70 \kms. The combined sample is consistent with a linear variation of projected rotational velocity with effective temperature, which would imply rotational velocities for supergiants of 70 \kms at an effective temperature of 28 000 K (approximately B0 spectral type) decreasing to 32 \kms at 12 000 K (B8 spectral type). For all targets, the macroturbulent broadening would appear to be consistent with a Gaussian distribution (although other distributions cannot be discounted) with an 1e\frac{1}{e} half-width varying from approximately 20 \kms at B8 to 60 \kms at B0 spectral types.Comment: 4 figures, 8 pages, submitted to Astronomy and Astrophysic

    Spectroscopic determination of the fundamental parameters of 66 B-type stars in the field-of-view of the CoRoT satellite

    Get PDF
    We aim to determine the fundamental parameters of a sample of B stars with apparent visual magnitudes below 8 in the field-of-view of the CoRoT space mission, from high-resolution spectroscopy. We developed an automatic procedure for the spectroscopic analysis of B-type stars with winds, based on an extensive grid of FASTWIND model atmospheres. We use the equivalent widths and/or the line profile shapes of continuum normalized hydrogen, helium and silicon line profiles to determine the fundamental properties of these stars in an automated way. After thorough tests, both on synthetic datasets and on very high-quality, high-resolution spectra of B stars for which we already had accurate values of their physical properties from alternative analyses, we applied our method to 66 B-type stars contained in the ground-based archive of the CoRoT space mission. We discuss the statistical properties of the sample and compare them with those predicted by evolutionary models of B stars. Our spectroscopic results provide a valuable starting point for any future seismic modelling of the stars, should they be observed by CoRoT.Comment: 31 pages (including 14 pages online material), 32 figure

    Chemical composition of B-type supergiants in the OB8, OB10, OB48, OB78 associations of M31

    Get PDF
    Absolute and differential chemical abundances are presented for the largest group of massive stars in M31 studied to date. These results were derived from intermediate resolution spectra of seven B-type supergiants, lying within four OB associations covering a galactocentric distance of 5 - 12 kpc. The results are mainly based on an LTE analysis, and we additionally present a full non-LTE, unified model atmosphere analysis of one star (OB78-277) to demonstrate the reliability of the differential LTE technique. A comparison of the stellar oxygen abundance with that of previous nebular results shows that there is an offset of between ~0.15 - 0.4 dex between the two methods which is critically dependent on the empirical calibration adopted for the R23 parameter with [O/H]. However within the typical errors of the stellar and nebular analyses (and given the strength of dependence of the nebular results on the calibration used) the oxygen abundances determined in each method are fairly consistent. We determine the radial oxygen abundance gradient from these stars, and do not detect any systematic gradient across this galactocentric range. We find that the inner regions of M31 are not, as previously thought, very 'metal rich'. Our abundances of C, N, O, Mg, Si, Al, S and Fe in the M31 supergiants are very similar to those of massive stars in the solar neighbourhood.Comment: 15 pages, 9 figures and 9 tables. Submitted to A&A April 200

    Broad Balmer Wings in BA Hyper/Supergiants Distorted by Diffuse Interstellar Bands: Five Examples in the 30 Doradus Region from the VLT-FLAMES Tarantula Survey

    Get PDF
    Extremely broad emission wings at Hβ and Hα have been found in VLT-FLAMES Tarantula Survey data for five very luminous BA supergiants in or near 30 Doradus in the Large Magellanic Cloud. The profiles of both lines are extremely asymmetrical, which we have found to be caused by very broad diffuse interstellar bands (DIBs) in the longward wing of Hβ and the shortward wing of Hα. These DIBs are well known to interstellar but not to many stellar specialists, so that the asymmetries may be mistaken for intrinsic features. The broad emission wings are generally ascribed to electron scattering, although we note difficulties for that interpretation in some objects. Such profiles are known in some Galactic hyper/supergiants and are also seen in both active and quiescent Luminous Blue Variables (LBVs). No prior or current LBV activity is known in these 30 Dor stars, although a generic relationship to LBVs is not excluded; subject to further observational and theoretical investigation, it is possible that these very luminous supergiants are approaching the LBV stage for the first time. Their locations in the HRD and presumed evolutionary tracks are consistent with that possibility. The available evidence for spectroscopic variations of these objects is reviewed, while recent photometric monitoring does not reveal variability. A search for circumstellar nebulae has been conducted, with an indeterminate result for one of them

    Statistical properties of a sample of periodically variable B-type supergiants - Evidence for opacity-driven gravity-mode oscillations

    Get PDF
    We have studied a sample of 28 periodically variable B-type supergiants selected from the HIPPARCOS mission and 12 comparison stars covering the whole B-type spectral range. Our goal is to test if their variability is compatible with opacity-driven non-radial oscillations. We have used the NLTE atmosphere code FASTWIND to derive the atmospheric and wind parameters of the complete sample through line profile fitting. We applied the method to selected H, He and Si line profiles, measured with the high resolution CES spectrograph attached to the ESO CAT telescope in La Silla, Chile. From the location of the stars in the (log Teff, log g) diagram, we suggest that variability of our sample supergiants is indeed due to the gravity modes resulting from the opacity mechanism. We find nine of the comparison stars to be periodically variable as well, and suggest them to be new alpha Cyg variables. We find marginal evidence of a correlation between the amplitude of the photometric variability and the wind density. We investigate the Wind Momentum Luminosity Relation for the whole range of B spectral type supergiants, and find that the later types (> B5) perfectly follow the relation for A supergiants. Additionally, we provide a new spectral type - Teff calibration for B supergiants. Our results imply the possibility to probe internal structure models of massive stars of spectral type B through seismic tuning of gravity modes.Comment: 33 pages (including 14 pages online material). Accepted for publication in Astronomy & Astrophysic

    Radiation-driven winds of hot luminous stars XVII. Parameters of selected central stars of PN from consistent optical and UV spectral analysis and the universality of the mass-luminosity relation

    Full text link
    Context: The commonly accepted mass-luminosity relation of central stars of planetary nebulae (CSPNs) might not be universally valid. While earlier optical analyses could not derive masses and luminosities independently (instead taking them from theoretical evolutionary models) hydrodynamically consistent modelling of the stellar winds allows using fits to the UV spectra to consistently determine also stellar radii, masses, and luminosities without assuming a mass-luminosity relation. Recent application to a sample of CSPNs raised questions regarding the validity of the theoretical mass-luminosity relation of CSPNs. Aims: The results of the earlier UV analysis are reassessed by means of a simultaneous comparison of observed optical and UV spectra with corresponding synthetic spectra. Methods: Using published stellar parameters (a) from a consistent UV analysis and (b) from fits to optical H and He lines, we calculate simultaneous optical and UV spectra with our model atmosphere code, which has been improved by implementing Stark broadening for H and He lines. Results: Spectra computed with the parameter sets from the UV analysis yield good agreement to the observations, but spectra computed with the stellar parameters from the published optical analysis and using corresponding consistent wind parameters show large discrepancies to both the observed optical and UV spectra. The published optical analyses give good fits to the observed spectrum only because the wind parameters assumed in these analyses are inconsistent with their stellar parameters. By enforcing consistency between stellar and wind parameters, stellar parameters are obtained which disagree with the core-mass-luminosity relation for the objects analyzed. This disagreement is also evident from a completely different approach: an investigation of the dynamical wind parameters.Comment: 22 pages, 18 fugre
    corecore