26 research outputs found

    Autonomic modulation and antiarrhythmic therapy in a model of long QT syndrome type 3

    Get PDF
    AIMS: Clinical observations in patients with long QT syndrome carrying sodium channel mutations (LQT3) suggest that bradycardia caused by parasympathetic stimulation may provoke torsades de pointes (TdP). beta-Adrenoceptor blockers appear less effective in LQT3 than in other forms of the disease. METHODS AND RESULTS: We studied effects of autonomic modulation on arrhythmias in vivo and in vitro and quantified sympathetic innervation by autoradiography in heterozygous mice with a knock-in deletion (DeltaKPQ) in the Scn5a gene coding for the cardiac sodium channel and increased late sodium current (LQT3 mice). Cholinergic stimulation by carbachol provoked bigemini and TdP in freely roaming LQT3 mice. No arrhythmias were provoked by physical stress, mental stress, isoproterenol, or atropine. In isolated, beating hearts, carbachol did not prolong action potentials per se, but caused bradycardia and rate-dependent action potential prolongation. The muscarinic inhibitor AFDX116 prevented effects of carbachol on heart rate and arrhythmias. beta-Adrenoceptor stimulation suppressed arrhythmias, shortened rate-corrected action potential duration, increased rate, and minimized difference in late sodium current between genotypes. beta-Adrenoceptor density was reduced in LQT3 hearts. Acute beta-adrenoceptor blockade by esmolol, propranolol or chronic propranolol in vivo did not suppress arrhythmias. Chronic flecainide pre-treatment prevented arrhythmias (all P < 0.05). CONCLUSION: Cholinergic stimulation provokes arrhythmias in this model of LQT3 by triggering bradycardia. beta-Adrenoceptor density is reduced, and beta-adrenoceptor blockade does not prevent arrhythmias. Sodium channel blockade and beta-adrenoceptor stimulation suppress arrhythmias by shortening repolarization and minimizing difference in late sodium current.status: publishe

    Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome

    Get PDF
    BACKGROUND: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P&lt;5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P&lt;10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P&lt;10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P&lt;0.005). CONCLUSIONS: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.</p

    Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls.

    Get PDF
    PURPOSE: Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate. METHODS: We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes-rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants. RESULTS: Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 × 10-18) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 × 10-13). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency. CONCLUSION: Large case-control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility.

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel Na1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on Na1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings

    Frequentissima in facto, rei militaris materia, ex utroque iure desumpta

    No full text
    quam ... ad consequendum licentiae in utroq. iure gradum publicè proponit Ioannes Steinfurt Hammonensis ... ad diem 28. Novemb. ...Enthält 76 ThesenLic. iur. Basel, 159

    Die schwierige Gegenwärtigkeit des Vergangenen. Gedanken zu einigen Kunstwerken des Gymnasium Dionysianum

    No full text
    Grave J. Die schwierige Gegenwärtigkeit des Vergangenen. Gedanken zu einigen Kunstwerken des Gymnasium Dionysianum. In: Gymnasium Dionysianum Rheine 1659-2009. Festschrift zum 350-jährigen Jubiläum. Steinfurt; 2009: 98-115

    Mahaim pathway potential revealed by high-resolution three-dimensional mapping

    No full text
    Mapping and ablation of atriofascicular fibers can be highly challenging due to the complex and dynamic anatomy of the tricuspid valve annulus. This case highlights the utility of a multi-electrode catheter three-dimensional mapping approach to localize the Mahaim pathway along the tricuspid annulus in order to guide catheter ablation

    Early Repolarization

    No full text

    Whole-heart computational modelling provides further mechanistic insights into ST-elevation in Brugada syndrome.

    Get PDF
    BACKGROUND Brugada syndrome (BrS) is characterized by dynamic ST-elevations in right precordial leads and increased risk of ventricular fibrillation and sudden cardiac death. As the mechanism underlying ST-elevation and malignant arrhythmias is controversial computational modeling can aid in exploring the disease mechanism. Thus we aim to test the main competing hypotheses ('delayed depolarization' vs. 'early repolarization') of BrS in a whole-heart computational model. METHODS In a 3D whole-heart computational model, delayed epicardial RVOT activation with local conduction delay was simulated by reducing conductivity in the epicardial RVOT. Early repolarization was simulated by instead increasing the transient outward potassium current (Ito) in the same region. Additionally, a reduction in the fast sodium current (INa) was incorporated in both models. RESULTS Delayed depolarization with local conduction delay in the computational model resulted in coved-type ST-elevation with negative T-waves in the precordial surface ECG leads. 'Saddleback'-shaped ST-elevation was obtained with reduced substrate extent or thickness. Increased Ito simulations showed early repolarization in the RVOT with a descending but not coved-type ST-elevation. Reduced INa did not show a significant effect on ECG morphology. CONCLUSIONS In this whole-heart BrS computational model of both major hypotheses, realistic coved-type ECG resulted only from delayed epicardial RVOT depolarization with local conduction delay but not early repolarizing ion channel modifications. These simulations provide further support for the depolarization hypothesis as electrophysiological mechanism underlying BrS
    corecore