179 research outputs found

    Presence and activity of nitrogen-fixing bacteria in Scots pine needles in a boreal forest: a nitrogen-addition experiment

    Get PDF
    Endophytic nitrogen-fixing bacteria have been detected and isolated from the needles of conifer trees growing in North American boreal forests. Because boreal forests are nutrient-limited, these bacteria could provide an important source of nitrogen for tree species. This study aimed to determine their presence and activity in a Scandinavian boreal forest, using immunodetection of nitrogenase enzyme subunits and acetylene-reduction assays of native Scots pine (Pinus sylvestris L.) needles. The presence and rate of nitrogen fixation by endophytic bacteria were compared between control plots and fertilized plots in a nitrogen-addition experiment. In contrast to the expectation that nitrogen-fixation rates would decline in fertilized plots, as seen, for instance, with nitrogen-fixing bacteria associated with bryophytes, there was no difference in the presence or activity of nitrogen-fixing bacteria between the two treatments. The extrapolated calculated rate of nitrogen fixation relevant for the forest stand was 20 g N ha(-1) year(-1), which is rather low compared with Scots pine annual nitrogen use but could be important for the nitrogen-poor forest in the long term. In addition, of 13 colonies of potential nitrogen-fixing bacteria isolated from the needles on nitrogen-free media, 10 showed in vitro nitrogen fixation. In summary, 16S rRNA sequencing identified the species as belonging to the genera Bacillus, Variovorax, Novosphingobium, Sphingomonas, Microbacterium and Priestia, which was confirmed by Illumina whole-genome sequencing. Our results confirm the presence of endophytic nitrogen-fixing bacteria in Scots pine needles and suggest that they could be important for the long-term nitrogen budget of the Scandinavian boreal forest

    Metodologi för företagsekonomer - Ett försök till positionsbestämning

    Get PDF
    Begreppet ’metodologi’ utnyttjas ofta för att referera till undersökningar av mål, begrepp och argumentationsprinciper inom någon disciplin, medan begreppet ’metod’ då vanligen utnyttjas för att referera till procedurer som kommer till användning vid någon aktivitet. Givet den distinktionen, så kan konstateras att det i huvudsak är metodologifrågor som diskuteras i denna elektroniskt publicerade bok. Det akademiska ämnet företagsekonomi kan säkerligen karakteriseras på många olika sätt. Det är i varje fall lätt att lyfta fram två egenskaper som utmärker ämnet. En är ämnets uppdelning i en teoretisk-empirisk del (där det kan tilläggas att företagsekonomin hämtat inspiration från många olika vetenskapliga discipliner) och en normativ del. Den andra egenskapen är den stora variation av modeller, eller representationer, som utnyttjas inom företagsekonomin. Dessa två egenskaper hos företagsekonomin spelar här en viktig roll. Min förhoppning är att en bred diskussion av metodologifrågor, av det slag jag här försöker ge, skall vara av intresse för företagsekonomer med skilda intresseinriktningar. Många exempel är inlagda för att belysa och tydliggöra skilda resonemang. Det kanske bör tilläggas att alla dessa exempel inte är hämtade från det företagsekonomiska området.Metodologi; Vetenskapsfilosofi; Teorier; Modeller; Metaforer

    3,3,6,6,9,9-Hexamethyl-2,3,4,5,6,7,8,9-octa­hydro-1H-xanthene-1,8-dione

    Get PDF
    The title compound, C19H26O3, was synthesized directly from the condensation of 5,5-dimethyl­cyclo­hexane-1,3-dione with malononitrile catalysed by palladium chloride: there are two molecules in the asymmetric unit

    Directed diversity-oriented synthesis. Ring-fused 5- to 10-membered rings from a common peptidomimetic 2-pyridone precursor

    Get PDF
    AbstractA variety of ring-fused 2-pyridone-based central fragments were prepared using a strategy inspired by diversity-oriented synthesis. The produced compounds are diverse, yet focused, analogs of biologically active peptidomimetic 2-pyridones

    Climatic impacts on the bacterial community profiles of cork oak soils

    Get PDF
    Climate changes comprise increasing global temperature and water cycle deregulation (precipitation storms and long dry seasons). Many affected ecosystems are located within the Mediterranean basin, where cork oak (Quercus suber L.) is one of the most important forest ecosystems. Despite cork oak tolerance to drought, the decrease of water availability and increase of temperature is causing a serious decline of cork oak populations. In the present work, the bacterial community of cork oak soils was assessed by metabarcoding using Illumina Miseq. Soils from seven independent cork oak forests were collected along a climate gradient. In all forest soils, Proteobacteria and Actinobacteria were the richest and more abundant bacteria. Acidobacteria also presented a high relative abundance, and Chloroflexi was a rich phylum. The soil bacterial community diversity and composition was strongly affected by the climatic region where cork oak resides and specific bacterial taxa were differently affected by precipitation and temperature. Accordingly, cork oak bacterial communities clustered into three distinct groups, related with humid, sub-humid and arid/semi-arid climates. Driest and warmer forests presented more diverse bacterial communities than humid and coolest forests. However, driest climates presented more homogenous bacterial communities among forests than humid climates. Climate (mainly precipitation) revealed to be the strongest driver leading to significant variations of bacterial community profiles. The most impacted bacterial taxa by climatic variables were Proteobacteria, in particular Gammaproteobacteria and Deltaproteobacteria, Chloroflexi, and Firmicutes. Humid forests presented mainly Acidobacteria as good indicators of climate, whereas Actinobacteria members were better indicators for arid forests (mainly Gaiellales and Frankiales). Some indicator species for different climate conditions were members of the bacterial core of cork oak stands (7% of the total bacterial community). Taken together, differentThis work was supported by FEDER through the Operational Competitiveness Program (COMPETE) and by Portuguese national funds through the Foundation for Science and Technology (FCT) within the scope of the project POCI-01-0145-FEDER-028635; FCT/MCTES/PIDDAC (Portugal) under the project (PEst-OE/BIA/UI4046/2014; UID/MULTI/04046/2013) and PhD grant to F.R. (SFRH/BD/86519/2012)

    The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts

    Get PDF
    © 2015 International Society for Microbial Ecology All rights reserved. Despite being one of the simplest metazoans, corals harbor some of the most highly diverse and abundant microbial communities. Differentiating core, symbiotic bacteria from this diverse hostassociated consortium is essential for characterizing the functional contributions of bacteria but has not been possible yet. Here we characterize the coral core microbiome and demonstrate clear phylogenetic and functional divisions between the micro-scale, niche habitats within the coral host. In doing so, we discover seven distinct bacterial phylotypes that are universal to the core microbiome of coral species, separated by thousands of kilometres of oceans. The two most abundant phylotypes are co-localized specifically with the corals' endosymbiotic algae and symbiont-containing host cells. These bacterial symbioses likely facilitate the success of the dinoflagellate endosymbiosis with corals in diverse environmental regimes

    Synthesis of Indomorphan Pseudo Natural Product Inhibitors of Glucose Transporters GLUT‐1 and ‐3

    Get PDF
    Bioactive compound design based on natural product (NP) structure may be limited due to partial coverage of NP‐like chemical space and biological target space. These limitations can be overcome by combining NP‐centered strategies with fragment‐based compound design through combination of NP‐derived fragments to structurally unprecedented “pseudo natural products” (pseudo‐NPs). We describe the design, synthesis and biological evaluation of a collection of indomorphan pseudo‐NPs that combine biosynthetically unrelated indole‐ and morphan‐alkaloid fragments. Biological investigation in a cell‐based screen for modulators of glucose uptake identified the indomorphane derivative Glupin as potent inhibitor of glucose uptake. Glupin selectively targets and upregulates both, glucose transporters GLUT‐1 and GLUT‐3. Glupin suppresses glycolysis, reduces the levels of glucose‐derived metabolites and attenuates the growth of various cancer cell lines. Our findings underscore the importance of dual GLUT‐1 and GLUT‐3 inhibition to efficiently suppress tumor cell growth and the cellular rescue mechanism, which counteracts glucose scarcity

    Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes

    Get PDF
    Grain legumes are a cost-effective alternative for the animal protein in improving the diets of the poor in South-East Asia and Africa. Legumes, through symbiotic nitrogen fixation, meet a major part of their own N demand and partially benefit the following crops of the system by enriching soil. In realization of this sustainability advantage and to promote pulse production, United Nations had declared 2016 as the “International Year of pulses”. Grain legumes are frequently subjected to both abiotic and biotic stresses resulting in severe yield losses. Global yields of legumes have been stagnant for the past five decades in spite of adopting various conventional and molecular breeding approaches. Furthermore, the increasing costs and negative effects of pesticides and fertilizers for crop production necessitate the use of biological options of crop production and protection. The use of plant growth-promoting (PGP) bacteria for improving soil and plant health has become one of the attractive strategies for developing sustainable agricultural systems due to their eco-friendliness, low production cost and minimizing consumption of non-renewable resources. This review emphasizes on how the PGP actinobacteria and their metabolites can be used effectively in enhancing the yield and controlling the pests and pathogens of grain legumes
    corecore