316 research outputs found
Recommended from our members
Gujba: A new Bencubbin-like meteorite fall from Nigeria
Gujba is a new Bencubbin-like meteorite fall enriched in N-15 and consisting (in vol.%) of 41% metal nodules, 20% large light-colored silicate nodules and 39% dark-colored, C- and silicate-rich matrix
Cyclical Quantum Memory for Photonic Qubits
We have performed a proof-of-principle experiment in which qubits encoded in
the polarization states of single-photons from a parametric down-conversion
source were coherently stored and read-out from a quantum memory device. The
memory device utilized a simple free-space storage loop, providing a cyclical
read-out that could be synchronized with the cycle time of a quantum computer.
The coherence of the photonic qubits was maintained during switching operations
by using a high-speed polarizing Sagnac interferometer switch.Comment: 4 pages, 5 figure
Onsager coefficients of a Brownian Carnot cycle
We study a Brownian Carnot cycle introduced by T. Schmiedl and U. Seifert
[Europhys. Lett. \textbf{81}, 20003 (2008)] from a viewpoint of the linear
irreversible thermodynamics. By considering the entropy production rate of this
cycle, we can determine thermodynamic forces and fluxes of the cycle and
calculate the Onsager coefficients for general protocols, that is, arbitrary
schedules to change the potential confining the Brownian particle. We show that
these Onsager coefficients contain the information of the protocol shape and
they satisfy the tight-coupling condition irrespective of whatever protocol
shape we choose. These properties may give an explanation why the
Curzon-Ahlborn efficiency often appears in the finite-time heat engines
Solvent viscosity dependence for enzymatic reactions
A mechanism for relationship of solvent viscosity with reaction rate constant
at enzyme action is suggested. It is based on fluctuations of electric field in
enzyme active site produced by thermally equilibrium rocking (cranckshaft
motion) of the rigid plane (in which the dipole moment lies) of
a favourably located and oriented peptide group (or may be a few of them). Thus
the rocking of the plane leads to fluctuations of the electric field of the
dipole moment. These fluctuations can interact with the reaction coordinate
because the latter in its turn has transition dipole moment due to separation
of charges at movement of the reacting system along it. The rocking of the
plane of the peptide group is sensitive to the microviscosity of its
environment in protein interior and the latter is a function of the solvent
viscosity. Thus we obtain an additional factor of interrelationship for these
characteristics with the reaction rate constant. We argue that due to the
properties of the cranckshaft motion the frequency spectrum of the electric
field fluctuations has a sharp resonance peak at some frequency and the
corresponding Fourier mode can be approximated as oscillations. We employ a
known result from the theory of thermally activated escape with periodic
driving to obtain the reaction rate constant and argue that it yields reliable
description of the preexponent where the dependence on solvent viscosity
manifests itself. The suggested mechanism is shown to grasp the main feature of
this dependence known from the experiment and satisfactorily yields the upper
limit of the fractional index of a power in it.Comment: 36 LaTex pages, 9 Eps figures, final versio
On the fourth-order accurate compact ADI scheme for solving the unsteady Nonlinear Coupled Burgers' Equations
The two-dimensional unsteady coupled Burgers' equations with moderate to
severe gradients, are solved numerically using higher-order accurate finite
difference schemes; namely the fourth-order accurate compact ADI scheme, and
the fourth-order accurate Du Fort Frankel scheme. The question of numerical
stability and convergence are presented. Comparisons are made between the
present schemes in terms of accuracy and computational efficiency for solving
problems with severe internal and boundary gradients. The present study shows
that the fourth-order compact ADI scheme is stable and efficient
Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments
Magnesite forms a series of 1- to 15-m-thick beds within the approximate to2.0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680-m-thick formation is composed of a stromatolite-dolomite-'red bed' sequence formed in a complex combination of shallow-marine and non-marine, evaporitic environments. Dolomite-collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by delta C-13 values from +7.1 parts per thousand to +11.6 parts per thousand (V-PDB) and delta O-18 ranging from 17.4 parts per thousand to 26.3 parts per thousand (V-SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high delta C-13 values ranging from +9.0 parts per thousand to +11.6 parts per thousand and delta O-18 values of 20.0-25.7 parts per thousand. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water-derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high delta C-13 values reflect a combined contribution from both global and local carbon reservoirs. A C- 13-rich global carbon reservoir (delta C-13 at around +5 parts per thousand) is related to the perturbation of the carbon cycle at 2.0 Ga, whereas the local enhancement in C-13 (up to +12 parts per thousand) is associated with evaporative and restricted environments with high bioproductivity
Existence theorems in the geometrically non-linear 6-parametric theory of elastic plates
In this paper we show the existence of global minimizers for the
geometrically exact, non-linear equations of elastic plates, in the framework
of the general 6-parametric shell theory. A characteristic feature of this
model for shells is the appearance of two independent kinematic fields: the
translation vector field and the rotation tensor field (representing in total 6
independent scalar kinematic variables). For isotropic plates, we prove the
existence theorem by applying the direct methods of the calculus of variations.
Then, we generalize our existence result to the case of anisotropic plates. We
also present a detailed comparison with a previously established Cosserat plate
model.Comment: 19 pages, 1 figur
Genome-wide meta-analysis identifies eight new susceptibility loci for cutaneous squamous cell carcinoma
Cutaneous squamous cell carcinoma (SCC) is one of the most common cancers in the United States. Previous genome-wide association studies (GWAS) have identified 14 single nucleotide polymorphisms (SNPs) associated with cutaneous SCC. Here, we report the largest cutaneous SCC meta-analysis to date, representing six international cohorts and totaling 19,149 SCC cases and 680,049 controls. We discover eight novel loci associated with SCC, confirm all previously associated loci, and perform fine mapping of causal variants. The novel SNPs occur within skin-specific regulatory elements and implicate loci involved in cancer development, immune regulation, and keratinocyte differentiation in SCC susceptibility
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
A review of spatial causal inference methods for environmental and epidemiological applications
The scientific rigor and computational methods of causal inference have had
great impacts on many disciplines, but have only recently begun to take hold in
spatial applications. Spatial casual inference poses analytic challenges due to
complex correlation structures and interference between the treatment at one
location and the outcomes at others. In this paper, we review the current
literature on spatial causal inference and identify areas of future work. We
first discuss methods that exploit spatial structure to account for unmeasured
confounding variables. We then discuss causal analysis in the presence of
spatial interference including several common assumptions used to reduce the
complexity of the interference patterns under consideration. These methods are
extended to the spatiotemporal case where we compare and contrast the potential
outcomes framework with Granger causality, and to geostatistical analyses
involving spatial random fields of treatments and responses. The methods are
introduced in the context of observational environmental and epidemiological
studies, and are compared using both a simulation study and analysis of the
effect of ambient air pollution on COVID-19 mortality rate. Code to implement
many of the methods using the popular Bayesian software OpenBUGS is provided
- …