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Cutaneous squamous cell carcinoma (SCC) is one of the most common cancers in the United

States. Previous genome-wide association studies (GWAS) have identified 14 single

nucleotide polymorphisms (SNPs) associated with cutaneous SCC. Here, we report the lar-

gest cutaneous SCC meta-analysis to date, representing six international cohorts and totaling

19,149 SCC cases and 680,049 controls. We discover eight novel loci associated with SCC,

confirm all previously associated loci, and perform fine mapping of causal variants. The novel

SNPs occur within skin-specific regulatory elements and implicate loci involved in cancer

development, immune regulation, and keratinocyte differentiation in SCC susceptibility.
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Cutaneous squamous cell carcinoma (SCC) is one of the
most common cancers with an estimated 700,000 cases
diagnosed in the USA annually. Metastatic SCC is

responsible for 3900–8800 deaths annually in the USA1,2. Risk
factors for SCC include age, gender, fair skin pigmentation phe-
notypes, ultraviolet radiation exposure, and immunosuppres-
sion3. While the risk factors for SCC development have largely
been attributed to environmental exposures and skin pigmenta-
tion, there has been a growing appreciation of the contribution of
germline genetics in SCC development.

Recently, three genome-wide association studies (GWAS) have
identified 14 single-nucleotide polymorphisms (SNPs) associated
with cutaneous SCC4–6. These studies include a GWAS in 7404
SCC cases and 292,106 controls in the 23andMe, the Nurses’
Health Study (NHS) and the Health Professionals Follow-Up
Study (HPFS) cohort4, a GWAS in 7701 SCC cases and 60,186
controls from the Kaiser Permanente Northern California
healthcare system6, and a GWAS in 745 SCC cases and 12,805
controls from Rotterdam Study, NHS, and HPFS5. These 14 SNPs
involve loci which affect skin pigmentation, but also occur in loci
associated with cell-mediated immunity, anti-apoptotic pathways
and cellular proliferation.

Unfortunately, further identification of SCC risk loci has been
hampered by a lack of well-phenotyped cohorts and a cancer
registry for cutaneous SCC. To aid in this, we developed a SCC-
GWAS consortium comprised six international cohorts with data
on cutaneous SCC. Here, we present the results of the largest
cutaneous SCC meta-analysis to date, totaling 19,149 SCC cases
and 680,049 controls. We discover eight novel loci associated with
cutaneous SCC, confirm all previously associated loci, and per-
form fine mapping of causal variants. The novel SNPs occur
within skin-specific regulatory elements and implicate loci
involved in cancer development, immune regulation, and kera-
tinocyte differentiation in SCC susceptibility.

Results and discussion
Cohort description. The GWAS meta-analysis consisted of
19,149 SCC cases and 680,049 controls, including 2081 SCC cases
and 296,015 controls from deCODE genetics in Iceland, 398 cases
and 10,629 controls from Rotterdam, Netherlands, 6579 cases and
280,558 controls from 23andMe, 2287 cases and 30,966 controls
from NHS/HPFS, 103 cases and 1715 controls from Ohio State
University Hospital, and 7701 cases and 60,166 controls from
Kaiser Permanente. Demographics and further details on these
studies are found in the “Methods” and Supplementary Tables 1
and 2.

Genome-wide significant novel susceptibility loci. This meta-
analysis reinforced all 14 previously described loci associated with
cutaneous SCC (Fig. 1; Supplementary Table 3). Recently a C-
terminal exon mutation in the BRCA2 gene (K3326*, rs11571833)
was reported to confer risk of SCC7. We examined the meta-
analysis data and found that rs11571833 is associated with SCC
with an effect size of 0.36 (log odds ratio) for the alternate
(minor) allele and p-value 1.0 × 10−6, confirming the reported
observation and highlighting the contribution of DNA repair
genes to SCC risk.

In addition to confirming all previous susceptibility loci (Fig. 1;
Supplementary Table 3), this meta-analysis identified eight novel
susceptibility loci for cutaneous SCC: rs10399947 (1q21.3),
rs10200279 (2q33.1), rs10944479 (6q15), rs7834300 (8q23.3),
rs1325118 (9p23), rs7939541 (11p15.4), rs657187 and rs11170164
(12q13.13), rs721199 (12q23.1) (Table 1; Supplementary Tables 4,
5). Forest plots of the individual GWAS study results are detailed
in Supplementary Figs. 3A–3V. Regional association plots are

found in Supplementary Figs. 4A–4V. These loci included genes
involved in cancer progression (SETDB1: rs10399947, CASP8/
ALS2CR12: rs10200279, WEE1: rs7939541), immune regulation
(BACH2: rs10944479), keratinocyte differentiation (TRPS1:
rs7834300, KRT5: rs11170164 and rs657187), and pigmentation
(TYRP1: rs1325118). These loci are discussed in detail below.

Fine-mapping resolution at the associated loci. We sought to
refine the localization of potential functional variants in the 22
genome-wide significant loci using a Bayesian approach (Meth-
ods). Conditional analyses in 18 of the 22 identified loci revealed
21 distinct association signals or index SNPs with p < 5 × 10−8

(Supplementary Table 6, Supplementary Table 7). We further
estimated 99% the credible sets for every index SNP in 18 loci.
We excluded two loci from conditional analysis: the locus 6p21.32
was excluded as this is an HLA locus. The MC1R locus at
16q24.3 showed evidence of a large number of SNPs (24) driving
the association, suggesting, in part the presence of allelic het-
erogeneity8. This is consistent with previous studies including a
recent GWAS in the UK Biobank, which found 31 SNPs inde-
pendently associated with red hair color near MC1R, of which
only 10 were coding variants9,10. Due to allelic complexity and
potential artifacts with an external LD reference panel, this locus
was also excluded from conditional analysis. We found that the
number of SNPs in the sets across 18 loci ranges from 1 to 1990
with a mean value of 136. The lead SNP at seven signals
accounted for >0.80 of posterior probability of association (PPA,
Methods) and, at six of these signals including rs7939541 in the
novel 11p15.4 locus, PPA exceeded 0.99.

Fine mapping revealed three loci with distinct secondary
signals: rs6935510, rs10962599, and rs4778138. rs6935510 at
locus 6p25.3 (r2= 0.12 from the lead SNP rs12203592 in CEU
population) is 2 kb upstream of IRF4 in a predicted bivalent
promoter region and alters a number of regulatory motifs. IRF4 is
a transcription factor downstream of MITF and is associated
with photosensitivity, freckles, blue eyes, and brown hair color11.
rs10962599, an intronic variant in the skin pigmentation gene
BNC2 at 9p22.2, independent from lead SNP rs10810657 (r2=
0.0012 in CEU population) and in a H3K4me1 enhancer region
in melanocytes. rs4778138 at 15q13.1 is independent from the
lead SNP rs1800407 (r2= 0.0032 in CEU population). rs4778138
is an intronic variant in a novel locus, OCA2, and has been
implicated in melanoma risk, hair and eye color12–14.

SNPs associated with pigmentation and photodistributed sites.
Fair skin and sun exposure are well-described risk factors for
SCC. We analyzed the 22 SCC risk loci for an association with
pigmentation phenotypes in the deCODE cohort, including eye
color, hair color, freckling, and photosensitivity (Supplementary
Table 8). Pigmentation information was self-reported as pre-
viously described15,16. Nine out of 22 index SNPs were associated
with pigmentation phenotypes, including two novel SNPs;
rs7834300, an intronic SNP in TRPS1 associated with sun sen-
sitivity, and rs1325118, located 66 kb upstream of TYRP1 and is
associated with eye color17.

Although sun exposure information was not available for
the majority of cohorts, we sought to determine potential
gene–environment interactions by performing a site-stratified
analysis of SCC risk loci to determine SNPs associated with SCC
in photodistributed sites. Cohorts with SCC site information
(deCODE, NHS/HPFS, Rotterdam, and Ohio) were divided into
high photoexposure (head and neck, upper extremities) and low
photoexposure sites (trunk and legs) based on site location of the
first SCC. We observed one SNP, rs721199, in which the T allele
was specifically protective against SCC in low-photodistributed
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sites (Supplementary Table 9). rs721199 is an eQTL in skin tissue
for HAL (sun-exposed lower leg skin, p= 4.1 × 10−79 and sun-
exposed suprapubic skin 1.2 × 10−67) which has been shown to
play a role in UV radiation mediated immunosuppression. This
highlights a potential gene–environment interaction which
contributes to SCC development.

Heritability of SCC. We estimated the overall contribution of
common variants to SCC risk using LD Score Regression18.
Approximately 25% (95% confidence interval 0.17–0.32) of the
familial relative risk for SCC can be explained by common var-
iants across the genome. In contrast, the 22 genome-wide sig-
nificant loci explain 8.5% of the familial relative risk. This
suggests that there are additional SCC risk loci that could be
identified in a larger GWAS. We also used LD Score Regression to
explore whether particular regions of the genome dis-
proportionately contributed to the overall common-variant her-
itability. We partitioned common-variant heritability across 53
publicly available, non-cell-type-specific annotations and
observed significant enrichment in heritability (FDR < 0.1) for

coding regions (6.7 × enrichment, p= 8.5 × 10−4), super enhan-
cers (2.1×, p= 1.2 × 10−3), and H3K4me3 histone promoter
marks (1.7 × p= 5.5 × 10−3). Heritability in repressed regions was
significantly depleted (0.5×, p= 8.5 × 10−3) (Supplementary
Table 10)19. We also conducted enrichment analyses using 220
cell-type-specific histone marks; none of these marks were sig-
nificantly enriched (Supplementary Table 11)19. These findings
highlight the increased contribution to SCC risk from variants,
which affect protein coding and gene regulation.

Description of novel loci. At 1q21.3, rs10399947 has a PPA of
0.02, and is an eQTL for multiple genes in skin tissue, including
SETDB1, ECM1, and CERS2 (Supplementary Table 12). SETDB1
encodes a histone methyltransferase and is associated with the
propagation of several malignancies, including melanoma20,21.
ECM1 codes for the extracellular matrix protein 1, and has been
found to be overexpressed in epithelial malignancies as well as
melanoma cell lines22,23. CERS2 encodes ceramide synthase 2 and
is thought to inhibit metastases and invasion across multiple
cancer types, including breast cancer24.
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Fig. 1 Manhattan plot of the combined meta-analysis of GWAS of SCC. The Pfixed Stage one value for all SNPs present in at least two studies have been
plotted using a −log10(p-value). The total Stage one meta-analysis included eight SCC GWAS, totaling 19,149 cases and 680,049 controls. p < 5 × 10–8

(genome-wide significance) threshold is indicated by a dashed line. In total, 22 loci reached genome-wide significance, including 8 novel loci 1q21.3, 2q33.1,
6q15, 8q23.3, 9p23, 11p15.4, 12q13.3, and 12q23.1 are highlighted by *.

Table 1 Novel associations in SCC-GWAS meta-analysis.

SNP Chr Position Locus Gene Major allele Minor allele MAF Odds ratio (95% CI) Direction p-value

rs10399947 1 150861960 1q21.3 ARNT--[]--SETDB1 G A 0.368 0.94 (0.92–0.96) −, −, −, −, −, + 6.65E-09
rs10200279 2 202170655 2q33.1 [ALS2CR12] C T 0.287 1.07 (1.05–1.10) +,+,+,+,+, + 2.67E-09
rs10944479 6 90880393 6q15 [BACH2] G A 0.189 0.91 (0.89–0.94) −, −, −, −, −, N 3.75E-09
rs7834300 8 116611632 8q23.3 [TRPS1] C G 0.438 1.07 (1.05–1.09) +,+,+,+, −,+ 2.01E-09
rs1325118 9 12619616 9p23 []--TYRP1 T C 0.304 0.94 (0.91–0.96) −, −, −, −, +, − 4.38E-08
rs7939541 11 9590389 11p15.4 ZNF143--[]--WEE1 T C 0.410 1.08 (1.06–1.10) +,+,+,+,+, + 9.23E-12
rs657187 12 52898985 12q13.13 KRT6A--[]--KRT5 A G 0.420 0.93 (0.92–0.96) −, −, −, −, −, − 1.80E-09
rs721199 12 96374057 12q23.1 [HAL] C T 0.463 0.94 (0.92–0.96) −, −, −, −, −, − 3.55E-08

MAF: minor allele frequency, CI: confidence interval, build GRCh37. [] represents location of SNP either in relationship to known genes with [gene] indicating SNP is within the gene and gene—[]—
indicating intergenic SNPs. Minor allele is effect allele. Minor allele frequency (MAF) is based on the pooled meta-analysis. Direction is listed in order for 23me, deCODE, NHS/HPFS, Kaiser, Ohio, and
Rotterdam. N means not included in analysis.
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At 2q33.1, rs10200279 has a PPA of 0.12 and is an intronic SNP
of ALS2CR12, an eQTL in skin tissue for CASP8, ALS2CR12,
CASP10, and PPIL3 and alters six regulatory motifs (Supplemen-
tary Table 12)25,26. The CASP8/ALS2CR12 locus has been
implicated in multiple cancer types, including basal cell carcinoma
and breast cancer27–29. CASP10 is a homologue for CASP8 and has
been found to inhibit tumorigenesis; loss-of-function mutations
have been reported in multiple cancer types. PPIL3 is proximal to
CASP8 and has been independently associated with estrogen
receptor-negative breast cancer30. rs10200279 is LD with rs700635
(PPA 0.08, r2= 0.97 in European 1000G Phase 1 population),
which has been associated with basal cell carcinoma risk and
shown to functionally affect splicing of the cellular apoptosis
regulator, CASP827,29,31. Ten SNPs had a PPA threshold of 0.05
and could also represent potential causal variants. These are listed
in Supplementary Table 13. Interestingly, all of them are eQTLs in
the skin tissue for CASP8 and ALS2CR12.

At 6q15, rs10944479 has a PPA of 0.29 and is an intronic SNP of
BACH2, which encodes a transcription factor involved in tumor
immunosuppression and response to anti-PD-1 treatment32,33.
This SNP alters two predicted regulatory motifs (HNF6 and
Hoxa10)17. Expression of BACH2 was suppressed by 57% in SCC
as compared with paired matched normal skin (p= 6.8 × 10−9)
highlighting a potential mechanism by which SCC could evade
immune surveillance (Fig. 2).

At 8q23.3, rs7834300 has a PPA of 0.05 and is an intronic
variant in TRPS1, a sequence-specific transcriptional repressor
important for bone, hair follicle, and kidney differentiation.
Recently, TRPS1 has been associated with tanning response34.
rs7834300 alters two regulatory motifs (GR, Zec)17,25. In the
deCODE cohort, this variant was associated with sun sensitivity
(Supplementary Table 8).

At 9p23, rs1325118 has a PPA of 0.5 in our analysis and is 66 kb
upstream of TYRP1, a pigmentation gene and alters three predicted
regulatory motifs. In the deCODE cohort, rs1325118 was also
associated with eye pigmentation (Supplementary Table 8)35. In

SCC samples, expression of TYRP1 was suppressed 58% as
compared with matched normal skin biopsies (p= 3 × 10−5),
suggesting that keratinocytes in SCC may have defects in
differentiation and contain reduced pigmentation (Fig. 2).

At 11p15.4, rs7939541 accounts for over 99% of the PPA at this
locus and is 5.8 kb upstream ofWEE1. It is in an enhancer feature
and is an eQTL in skin tissue for WEE1, snoU13 (Supplementary
Table 12), alters two predicted regulatory motifs and is in a
DNAse hypersensitivity site for multiple tissues, including the
skin. This SNP falls in a region marked by H3K27ac and
H3K4me1 enhancer-associated histone marks, with lack of the
repressive H3K27me3 mark in primary keratinocytes (Fig. 3). In
addition, WEE1 transcript levels were suppressed in SCC as to the
normal skin (Fig. 3, p= 0.0002) WEE1 encodes a kinase that is a
G2-M checkpoint inhibitor and is highly expressed in multiple
cancer types, including melanoma and non-cutaneous squamous
cell carcinoma36,37. WEE1 inhibition can increase the sensitivity
of several different cancer types to radiation or chemotherapy36.

At 12q13.13, rs657187 has a PPA of 0.22, is 9.4 kb 3ʹ of KRT5,
and alters two predicted regulatory motifs17,25. It is also an
enhancer feature in the skin and an eQTL of KRT6C in the skin
(Supplementary Table 12), a keratinocyte development gene17,38.
Expression of KRT6C was 8.5 times higher in SCC as compared
with the normal skin (Fig. 2, p= 5.51 × 10−13). rs657187 is in low
LD (r2= 0.052 in CEU) with rs11170164 (PPA= 0.01), a nearby
SNP which encodes a G138E substitution in KRT5 and has been
previously associated with BCC and SCC39. Conditional analysis
of rs657187 and rs11170164 indicated that these variants each
have independent effects (padj= 2.28 × 10−6 and 5.67 × 10−5,
respectively, Supplementary Table 14).

At 12q23.1, rs721199 has a PPA of 0.36, is an intronic SNP of
HAL, alters three predicted regulatory motifs, and is an eQTL in
the skin tissue for HAL and RP11-256L6.3 (Supplementary
Table 12)17,25. HAL is highly expressed in the skin and plays a
role in UV-mediated immunosuppression40. In the stratification
analysis by photodistributed site (high or low), the protective
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Fig. 2 Gene expression analysis for novel SCC susceptibility loci. RNA-seq data were obtained from Gene Expression Omnibus (GSE84194) were
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association with rs721199 T allele occurred only in the low-
photodistributed site, and the heterogeneity in the effect sizes
among the subgroups was significant (p= 0.03, Supplementary
Table 9). The T allele is associated with higher expression levels
of HAL26.

Conclusion. In conclusion, this GWAS meta-analysis of 19,149
cases and 680,049 controls from the USA and Europe represents a
threefold increase in sample size compared with the previous
SCC-GWAS studies, and reinforced all 14 previously reported
loci. In addition, this meta-analysis identified eight novel sus-
ceptibility loci. In total, the 22 loci explain 8.5% of heritable risk
for SCC. Subanalyses of these 22 loci identify 9 loci associated
with pigmentation phenotypic traits and 1 locus (HAL) associated
with photodistribution-specific risk. In addition, fine mapping
identifies potentially causal SNPs which fall within putative reg-
ulatory elements in keratinocytes and melanocytes and regulate
the expression of genes involved in cancer progression, differ-
entiation, and immune regulation, highlighting the role of these
pathways in modulating SCC susceptibility.

Methods
Study design. The GWAS meta-analysis is comprised six international cohorts
(Supplementary Table 1). The GWAS data set from the personal genetic company
23andMe Inc. encompassed 6579 SCC cases and 280,558 controls of European

ancestry who consented to participate in research. The GWAS data set from the
Nurse’s Health Study (NHS)/ Health Professionals Follow-Up Study (HPFS) con-
sisted of 2287 SCC cases and 30,966 controls of European ancestry. The 23andMe
data and some of the NHS/HPFS data were used in a previously reported GWAS4.
Kaiser Permanente Northern California contributed a GWAS set encompassing 7701
cases with incident SCC and 60,166 controls of European ancestry. Some of these
data were used in another previously reported GWAS5,6. GWAS data from the
deCODE study encompassed 2081 SCC cases and 296,015 controls of European
ancestry. The Rotterdam study contributed a GWAS data set consisting of 398 cases
with SCC and 10,629 controls of European ancestry. The Ohio study included
GWAS data on 103 SCC cases and 1715 controls of European ancestry. Supple-
mentary Table 2 shows the gender and age of cases and controls from each cohort.

Case validation. Cases were medically adjudicated for the NHS/HPFS, Kaiser,
Rotterdam, and Ohio cohorts by histopathologic records. The deCODE cases were
ascertained from the Icelandic Cancer Registry, and were all histopathologically
confirmed. Cases were self-reported in the 23andMe cohort. In the self-reported
cases, survey response accuracy was validated by comparing a subgroup of survey
responses with medical record data, which revealed a sensitivity and specificity of
92 and 98%, respectively4.

Genotyping. All samples were collected with informed consent and ethical over-
sight. Samples were genotyped on a variety of commercial arrays, as previously
detailed4–7,15.

Quality control and imputation. All cohorts underwent strict quality control (QC)
procedures and were imputed using the following reference panels: Kaiser cases were
imputed using the 1000 Genomes Phase 1 integrated release, March 2012, with Aug
2012 chromosome X update, with singletons removed. 23andMe cases were imputed
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Fig. 3 Annotation of novel SNPs with epidermal enhancer information. a Top: Circles represent the number of SNPs considered at each stage of the
workflow to identify epigenetic context of all novel SNPs. We started with 22 lead SNPs identified by meta-GWAS, then found putative causal SNPs defined
as any SNPs with a PPA of >0.05 from our fine-mapping analysis. We next refined that expanded list to SNPs for which the genomic location overlapped a
previously identified epigenomic feature (either the H3K27ac enhancer mark or ends of an enhancer–promoter contact). Bottom: Heatmap displaying the
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region or contact. b Genome browser tracks for the genomic locus for SCC-index SNP rs793954, PPA > 0.99, demonstrating enhancer features in primary
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H3K27me3 (which marks inactive loci). Yellow denotes SNP location; note this SNP falls in a region marked by H3K27ac and H3K4me1 enhancer-
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associated TADs.
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using the March 2012 Version 3 release of 1000 Genomes Phase 1 reference hap-
lotypes. NHS/HPFS cases were imputed using the 1000 Genomes Project ALL Phase
1 Integrated Release Version 3 (March 2012) Haplotypes with singletons removed.
Ohio cases were imputed using 1000 Genomes Phase 3. The Rotterdam cases were
imputed using the latest version of Genome of the Netherlands (GoNL) data as the
reference. The deCODE data were processed using long-range phasing and impu-
tation based on data from the Icelandic population15. Only variants which were
found in either the 1000 Genomes Phase 1 Version 3 data set or the Haplotype
Reference Consortium data set (version 1.1) were included in the deCODE data.
Variants with large differences in frequency between Icelandic and European
populations were excluded from the deCODE data. Further information on asso-
ciation analysis of individual studies has been reported previously4,6.

Individual genome-wide association analysis. The methods used for association
testing in each cohort have been described in detail4–8. Briefly, association analysis
was performed using logistic regression, assuming an additive model for allelic
effects. Sex and population stratification () were adjusted for by principal component
(PC) analysis in each cohort, except deCODE. The deCODE cohort was adjusted
differently because it utilizes familial imputation for individuals who have not been
directly genotyped7. Five PCs were included to adjust for population stratification in
the 23andMe and the NHS/HPFS cohorts. Ten PCs were adjusted for in the Kaiser
and the Ohio cohorts. Rotterdam cohort adjusted for the four largest PCs. The
linkage disequilibrium (LD) score regression was applied in the deCODE cohort to
account for inflation in test statistics due to cryptic relatedness and stratification in
the Icelandic population18. The χ2 statistics from GWAS scan were regressed against
LD score and then the intercept was used as a correction factor9.

Meta-analysis. SNPs with imputation quality R2 < 0.3 in any data set were excluded
from that individual study prior to meta-analysis. For each study, SNPs with low
expected minor allele counts in cases (overall minor allele frequency times number of
cases < 10) were also removed before meta-analysis. Fixed-effects meta-analysis was
conducted using the METAL software. Heterogeneity of per-SNP effect size in each
cohort contributing to overall meta-analyses was assessed using heterogeneity I2

Cochran’s Q statistic (Supplementary Tables 3, 4). The meta-analysis genome-wide
inflation value (λ) was 1.06. QQ plots of the GWAS meta-analysis and individual
study p-values are provided (Supplementary Tables 3, 4). SNPs were considered
significant if they had a p-value less than 5 × 10−8. Individual study p-values are
listed in Supplementary Table 5. Effects are given as log odds ratio (β).

Proportion of familial relative risk. We estimated the proportion of familial
relative risk due to identified, genome-wide significant variants using

P
i β̂

2
i qi 1� qið Þ

h i
ln λð Þ ; ð1Þ

where β̂i and qi are the estimated log odds ratio and minor allele frequency for
variant i and λ is the familial relative risk for SCC (λ= 2.7)41,42. To estimate the
proportion of familial relative risks explained by tagged common variants across
the whole genome, we used

ĥ2obs= P 1� Pð Þð Þ
h i

lnðλÞ ; ð2Þ

where ĥ2obs is the estimate of “observed scale” heritability obtained from LD Score

Regression applied to the SCC meta-analysis summary statistics (ĥ2obs=9.3 × 10−3,
SE= 1.5 × 10−3, p= 5.6 × 10−10), and P is the fraction of cases in the overall
sample (2.8%).

Functional annotation of GWAS meta-analyses. We performed linkage dis-
equilibrium (LD) score regression analyses using the summary statistics from the
meta-analyses of the six GWASes19. We restricted analysis to all SNPs present on
the HapMap version 3 data set that had a MAF > 1% and an imputation quality
score R2 > 0.3 across all studies. LD scores were calculated using the 1000 Genomes
Project Phase 3 EUR reference panel. For stratified analyses taking genomic
annotations into account, we created a “baseline model” model with 53 non-cell-
type-specific overlapping annotations19. We also performed analyses using 220
cell-type-specific annotations for four histone markers (H3K4me1, H3K4me3,
H3K9ac, and H3K27ac) across 27–81 cell types, depending on the histone mar-
ker19. For the cell-type-specific analyses, we augmented the baseline model by
adding these annotations individually, creating 220 separate models, each with 54
annotations (53+ 1).

Annotation of SNPs with epidermal enhancer site information. The 22 genome-
wide significant SNPs as well as SNPs with a posterior probability of association
(PPA, Methods) > 0.05 in our fine-mapping analysis were annotated for enhancer
features using our keratinocyte genome-wide promoter capture Hi-C (CHi-C) and
H3K27ac ChIP-seq (Fig. 3a)43. Enhancer–promoter (EP) contacts and H3K27ac
ChIP-seq peaks were derived from Rubin et al.43. SNP locations were filtered for

direct overlap with H3K27ac peaks or the ends of enhancer–promoter contacts.
Contacts were annotated at 10 kb resolution, so SNPs overlapping either 10-kb
window marking the ends of a contact were considered overlapped. The WashU
Epigenome Browser was used to visualize a SNP and the tracks from the ENCODE
Project for NHEK as well as contacts (FDR < 0.01, proximal to the SNP) from
progenitor keratinocytes are displayed.

Functional annotation of significant loci. To further annotate regulatory func-
tion, PubMed and the NHGRI-EBI GWAS catalogue (version updated 4/10/2018)
were queried for prior publications regarding SNP function and disease associa-
tion44. We identified the closest related gene and evidence of regulatory function
using HaploReg v4.1 (http://archive.broadinstitute.org/mammals/haploreg/
haploreg.php)17. Gene annotations were based on the UCSC Genome Browser and
GENCODE version 13.BEDTools was used to calculate the proximity of each
variant to a gene by either annotation, as well as the orientation (3' or 5') relative to
the nearest end of the gene, based on the strand of the gene. For each index SNP or
linked SNP r2 ≥ 0.8 or SNP with a PPA >0.05, we extracted data on expression
quantitative trait loci (eQTL) for sun-exposed (lower leg) and not sun-exposed
(suprapubic area) skin tissue using GTEx portal dbGaP release V826.

Gene expression analysis. Raw RNA-seq data for nine paired matched SCC and
normal skin samples biopsied from eight patients. One patient had two SCCs from
different sites. (GSE84194 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE84194]) were obtained from the GEO (http://www-ncbi-nlm-nih-gov.
laneproxy.stanford.edu/geo/)45. Actinic keratosis samples from this data set were
excluded from analysis. Reads were aligned to the human genome (hg19) using
Tophat (v2.1.1). Featurecounts (v1.5.2) was used to generate count data and
Cufflinks (v2.2) to generated relative transcript levels in Fragments Per Kilobase of
transcript per million mapped read (FPKM), and DESeq (v1.6.3) using a matched
sample model was used to identify differentially expressed genes between the SCC
and normal skin samples. Each gene of interest was selected by closest proximity to
one of the eight novel risk variants; however, if a lead SNP was an eQTL in the skin
tissue for a more distant gene, then this gene was chosen as well. Boxplot was used
to visualize the expression of the SCC relative to normal skin of the genes sur-
rounding the eight novel SNPs.

Fine mapping. We used GCTA-COJO to establish distinct association signals at the
genome-wide significant loci with SCC susceptibility46. GCTA-COJO performs an
approximate conditional analysis using association summary statistics from GWAS
meta-analysis and the LD information estimated from a reference panel. For each
locus, we defined a 2Mb region encompassing 1Mb from the lead SNP (using
summary statistics) on both sides to ensure long-range genetic signals are not missed.
Conditional independent variants that reach genome-wide significance level (the
GCTA-COJO default level, 5 × 10−8) were considered as index SNPs for distinct
association signals. We applied additional filters to association summary statistics
and discarded variants with (i) MAF < 0.1%; (ii) ambiguous A/T and G/C alleles; and
(iii) allele coding and frequency mismatches between genotypes in summary statistics
and LD reference panel (implemented in GCTA-COJO). We defined the effective
sample size for each cohort and used these estimates further in the analysis:

Neff ¼ 4NcasesNcontrols= Ncases þ Ncontrolsð Þ: ð3Þ
We used imputed genotypes in the Harvard cohort (the imputation quality R2 >

0.3) as a reference panel for LD r measures (the Pearson correlation). We selected
the Harvard cohort as a reference panel for LD r measures (the Pearson
correlation), because it was the largest cohort of our meta-analysis, in which we
have access to raw genotype data. We used imputed genotypes with the imputation
quality R2 > 0.347. The total number of individuals in the Harvard reference panel
was 7403; the per-locus overlap between variants in summary statistics and
reference panel was > 80% for variants with MAF > 0.01 and >50% for variants with
MAF= 0.001–0.01. After applying the quality control, we had 19 of the 22 loci with
lead SNPs passing the significance threshold (p < 5 × 10−8) and, thus, available for
the analysis. The two discarded loci had their lead SNPs with MAF < 1%, which
were filtered out likely due low coverage of the genotyping platforms or insufficient
density of genotype imputation panels47. Another two loci in the MHC region
(16p21.32) and MC1R (16q24.3) region were excluded to their complicated LD
structures (Supplementary Table 6).

For each association signal from the conditional analyses by GCTA-COJO, we
computed an approximate Bayes factor in favor of association on the basis of effect
sizes and standard errors from the GWAS summary statistics within the 2 Mb
region of the locus48. When loci showed a single-association signal, the summary
statistics were taken from unconditional GWAS. When loci exhibited multiple
association signals, the summary statistics were derived from the approximate
conditional analysis adjusting for all other index variants in the region. The prior
probabilities of the variant to be causal were assumed to be the same among all the
variants and equal to 1/M, where M is the number of variants in the region.

For the ith variant the approximate Bayes factor is:

BFi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vi

Vi þ ω

s
exp

wβ2i
2ViðVi þ wÞ

� �
ð4Þ
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where βi and Vi denote the effect size and variance (the squared standard error) of
the variant i from unconditional or approximate conditional association analysis.
The parameter ω denotes the prior variance in effects, which is set to 0.04
(Wakefield, 2007)48.

Then the posterior probability that the ith variant is a true association signal
(PPA) is:

πi ¼
BFiPM

m¼1 BFm
ð5Þ

The 99% credible set is defined as the minimal number of variants with the
cumulative PPA of 0.99. The procedure to compute the 99% credible set is
accomplished in two steps: (i) order the variants in descending order of their PPA;
(ii) include ordered variants until the cumulative PPA reaches 0.9949.

Stratified association analysis by photodistributed sites. According to the
approach by Lin et al.50 we estimated the heterogeneity of genetic effect size
between high- and low-photoexposure site, considering overlapping controls used
in high- and low-photodistributed site cohorts50.

Correlation of the genetic effects of per-SNP in high- and low-photodistributed
site in each study is estimated by:

Corrðβ̂1; β̂2Þ ¼ n120

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n11n21
n10n20

r
þ n121

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n10n20
n11n21

r� �
=

ffiffiffiffiffiffiffiffiffi
n1n2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n11n21

p ffiffiffiffiffiffiffiffiffi
n1n2

p ð6Þ

Where β̂1 is the estimate of log odds ratio of an individual SNP in high-

photodistributed site in each study, β̂2 is the estimate of log odds ratio of the SNP
in low-photodistributed site in each study50.

n11, n10 and n1 are, respectively, the number of cases, the number of controls,
and the total number of subjects in the high-photodistributed cohort and n21, n20
and n2 are, respectively, the number of cases, the number of controls, and the total
number of subjects in the low-photodistributed cohort.

Given that the controls in the high- and low-photodistributed site cohorts are
totally overlapped, n120= n10= n20; whereas the cases are not shared: n121= 0.

The difference δ̂ between the genetic effects of the SNP in high- and low-
photodistributed site in each study is estimated by:

δ̂ ¼ b̂
β1 � b̂

β2 ð7Þ
The variance of δ̂ in each study is estimated by:

Var δ̂
� �

¼ Var b̂
β1

� �
þ Var β̂2

� �
� 2Corr β̂1; β̂2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var b̂

β1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var b̂

β2

� �svuut ð8Þ

Where Var b̂
β1

� �
and Var β̂2

� �
are, respectively, the variances of β̂1 and β̂2.

The heterogeneity of genetic effect size between high- and low-photodistributed
site for per-SNP in the overall six studies is tested by fixed effect meta-analysis of

δ̂i;Var
b̂
δi

� �
ð9Þ

where i is each of the six studies.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data from 23andMe, Inc were made available under a data use agreement that protects
participant privacy. Please contact dataset-request@23andme.com or visit
research.23andMe.com/collaborate for more information and to apply to access the data.
Precomputed rankings and P-values for the top 10,000 SNPs included in the GWAS
meta-analysis are available in the figshare repository https://doi.org/10.6084/m9.
figshare.1158832551. Any additional data (beyond those included in the main text and
Supplementary Information) that support the findings of this study are available from the
corresponding author upon request.
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