27 research outputs found

    Titan Surface Temperatures as Measured by Cassini CIRS

    No full text
    Thermal radiation from the surface of Titan reaches space through a spectral window of low opacity at 19-microns wavelength. This radiance gives a measure of the brightness temperature of the surface. Composite Infrared Spectrometer' (CIRS) observations from Cassini during its first four years at Saturn have permitted latitude mapping of zonally averaged surface temperatures. The measurements are corrected for atmospheric opacity using the dependence of radiance on emission angle. With the more complete latitude coverage and much larger dataset of CIRS we have improved upon the original results from Voyager IRIS. CIRS measures the equatorial surface brightness temperature to be 93.7+/-0.6 K, the same as the temperature measured at the Huygens landing site. The surface brightness temperature decreases by 2 K toward the south pole and by 3 K toward the north pole. The drop in surface temperature between equator and north pole implies a 50% decrease in methane saturation vapor pressure and relative humidity; this may help explain the large northern lakes. The H2 mole fraction is derived as a by-product of our analysis and agrees with previous results. Evidence of seasonal variation in surface and atmospheric temperatures is emerging from CIRS measurements over the Cassini mission

    Titan trace gaseous composition from CIRS at the end of the Cassini-Huygens prime mission

    No full text
    This paper reports on the results from an extensive study of all nadir-looking spectra acquired by Cassini/CIRS during the 44 flybys performed in the course of the nominal mission (2004-2008). With respect to the previous study (Coustenis, A., and 24 colleagues [2007]. Icarus 189, 35-62, on flybys TB-T10) we present here a significantly richer dataset with, in particular, more data at high northern and southern latitudes so that the abundances inferred here at these regions are more reliable. Our enhanced high-resolution dataset allows us to infer more precisely the chemical composition of Titan all over the disk. We also include improved spectroscopic data for some molecules and updated temperature profiles. The latitudinal distributions of all of the gaseous species are inferred. We furthermore test vertical distributions essentially for acetylene (C2H2) from CIRS limb-inferred data and from current General Circulation Models for Titan and compare our results on all the gaseous abundances with predictions from 1-D photochemical-radiative models to check the reliability of the chemical reactions and pathways. © 2009 Elsevier Inc

    Electronic sorting and recovery of single live cells from microlitre sized samples

    No full text
    International audienceSorting and recovering specific live cells from samples containing less than a few thousand cells have become major hurdles in rare cell exploration such as stem cell research, cell therapy and cell based diagnostics. We describe here a new technology based on a microelectronic chip integrating an array of over 100,000 independent electrodes and sensors which allow individual and parallel single cell manipulation of up to 10,000 cells while maintaining viability and proliferation capabilities. Manipulation is carried out using dynamic dielectrophoretic traps controlled by an electronic interface. We also demonstrate the capabilities of the chip by sorting and recovering individual live fluorescent cells from an unlabeled population

    Evolution of the stratospheric temperature and chemical composition over one titanian year

    No full text
    Since the Voyager 1 (V1) flyby in 1980, Titan's exploration from space and the ground has been ongoing for more than a full revolution of Saturn around the Sun (one Titanian year or 29.5 Earth years had elapsed in 2010 May). In this study, we search for temporal variations affecting Titan's atmospheric thermal and chemical structure within that year. We process Cassini/CIRS data taken during the Titan flybys from 2006-2013 and find a rather uneventful equatorial evolution. Conversely, at northern latitudes, we found enhanced abundances around the period of the northern spring equinox in mid-2009, which subsequently decreased (from 2010 to 2012), returning to values similar to those found in the V1 epoch, one Titanian year before. In the southern latitudes, since 2012, we see a trend for an increase of several trace gases (C4H2, C 3H4, and HCN), indicative of a seasonal atmospheric reversal setting in. When we compare the CIRS 2010 and the 1980 V1/IRIS spectra (reanalyzed here), we find limited inter-annual variations. A return to the 1980 stratospheric temperatures and abundances is generally achieved from 50°N to 50°S, indicative of the solar radiation being the dominating energy source at 10 AU, as for the Earth, as predicted by general circulation and photochemical models. Exceptions concern the most complex hydrocarbons (C 4H2 and C3H4). We also consider data from ground-based and Earth-orbiting observatories (such as from the Infrared Space Observatory, revisited here) and discuss possible atmospheric composition trends during a Titanian year. © 2013. The American Astronomical Society. All rights reserved.

    Thermal and chemical structure variations in Titan's stratosphere during the Cassini mission

    No full text
    We have developed a line-by-line Atmospheric Radiative Transfer for Titan code that includes the most recent laboratory spectroscopic data and haze descriptions relative to Titan's stratosphere. We use this code to model Cassini Composite Infrared Spectrometer data taken during the numerous Titan flybys from 2006 to 2012 at surface-intercepting geometry in the 600-1500 cm -1 range for latitudes from 50°S to 50°N. We report variations in temperature and chemical composition in the stratosphere during the Cassini mission, before and after the Northern Spring Equinox (NSE). We find indication for a weakening of the temperature gradient with warming of the stratosphere and cooling of the lower mesosphere. In addition, we infer precise concentrations for the trace gases and their main isotopologues and find that the chemical composition in Titan's stratosphere varies significantly with latitude during the 6 years investigated here, with increased mixing ratios toward the northern latitudes. In particular, we monitor and quantify the amplitude of a maximum enhancement of several gases observed at northern latitudes up to 50°N around mid-2009, at the time of the NSE. We find that this rise is followed by a rapid decrease in chemical inventory in 2010 probably due to a weakening north polar vortex with reduced lateral mixing across the vortex boundary. © 2012. The American Astronomical Society. All rights reserved.

    Titan Surface Temperatures from Cassini CIRS

    No full text
    Thermal radiation from the surface of Titan reaches space through a spectral window at 19-microns wavelength. After removing the effects of the atmosphere, measurement of this radiance gives the brightness temperature of the surface. The Composite Infrared Spectrometer (CIRS) has made such measurements during the Cassini prime mission. These observations cover a wide range of emission angles, thereby constraining the contributions from atmospheric radiance and opacity. With the more complete latitude coverage and much larger dataset, we have been able to improve upon the original results from Voyager IRIS. CIRS measures an equatorial surface brightness temperature, averaged over longitude, of 93.7 +/- 0.6 K. This agrees with the HASI temperature at the Huygens landing site. The latitude dependence of surface brightness temperature exhibits an approximately 2 K decrease toward the South Pole and 3 K decrease toward the North Pole. The lower surface temperatures seen at high latitudes are consistent with conditions expected for lake formation
    corecore