12 research outputs found

    Hospital Epidemics Tracker (HEpiTracker): Description and pilot study of a mobile app to track COVID-19 in hospital workers

    Get PDF
    Background: Hospital workers have been the most frequently and severely affected professional group during the COVID-19 pandemic, and have a big impact on transmission. In this context, innovative tools are required to measure the symptoms compatible with COVID-19, the spread of infection, and testing capabilities within hospitals in real time. Objective: We aimed to develop and test an effective and user-friendly tool to identify and track symptoms compatible with COVID-19 in hospital workers. Methods: We developed and pilot tested Hospital Epidemics Tracker (HEpiTracker), a newly designed app to track the spread of COVID-19 among hospital workers. Hospital staff in 9 hospital centers across 5 Spanish regions (Andalusia, Balearics, Catalonia, Galicia, and Madrid) were invited to download the app on their phones and to register their daily body temperature, COVID-19-compatible symptoms, and general health score, as well as any polymerase chain reaction and serological test results. Results: A total of 477 hospital staff participated in the study between April 8 and June 2, 2020. Of note, both health-related (n=329) and non-health-related (n=148) professionals participated in the study; over two-thirds of participants (68.8%) were health workers (43.4% physicians and 25.4% nurses), while the proportion of non-health-related workers by center ranged from 40% to 85%. Most participants were female (n=323, 67.5%), with a mean age of 45.4 years (SD 10.6). Regarding smoking habits, 13.0% and 34.2% of participants were current or former smokers, respectively. The daily reporting of symptoms was highly variable across participating hospitals; although we observed a decline in adherence after an initial participation peak in some hospitals, other sites were characterized by low participation rates throughout the study period. Conclusions: HEpiTracker is an already available tool to monitor COVID-19 and other infectious diseases in hospital workers. This tool has already been tested in real conditions. HEpiTracker is available in Spanish, Portuguese, and English. It has the potential to become a customized asset to be used in future COVID-19 pandemic waves and other environments

    Self-Generated Movements with “Unexpected” Sensory Consequences

    Get PDF
    SummaryThe nervous systems of diverse species, including worms and humans, possess mechanisms for distinguishing between sensations arising from self-generated (i.e., expected) movements from those arising from other-generated (i.e., unexpected) movements [1–3]. To make this critical distinction, animals generate copies, or corollary discharges, of motor commands [4, 5]. Corollary discharge facilitates the selective gating of reafferent signals arising from self-generated movements, thereby enhancing detection of novel stimuli [6–10]. However, for a developing nervous system, such sensory gating would be counterproductive if it impedes transmission of the very activity upon which activity-dependent mechanisms depend [11]. In infant rats during active (or REM) sleep—a behavioral state that predominates in early infancy [12–16]—neural circuits within the brainstem [17, 18] trigger hundreds of thousands of myoclonic twitches each day [19]. The putative contribution of these self-generated movements to the activity-dependent development of the sensorimotor system is supported by the observation that reafference from twitching limbs reliably and substantially triggers brain activity [20–23]. In contrast, under identical testing conditions, even the most vigorous wake movements reliably fail to trigger reafferent brain activity [21–23]. One hypothesis that accounts for this paradox is that twitches, uniquely among self-generated movements, lack corollary discharge [23]. Here, we test this hypothesis in newborn rats by manipulating the degree to which self-generated movements are expected and, therefore, their presumed recruitment of corollary discharge. We show that twitches, although self-generated, are processed as if they are unexpected

    The impact of COVID-19 on patients with asthma

    Full text link
    Background: An association between the severity of coronavirus disease 2019 (COVID-19) and the presence of certain chronic conditions has been suggested. However, unlike influenza and other viruses, the disease burden of COVID-19 in patients with asthma has been less evident. Objective: To understand the impact of COVID-19 in patients with asthma. Methods: Using big-data analytics and artificial intelligence through the SAVANA Manager clinical platform, we analysed clinical data from patients with asthma from January 1 to May 10, 2020. Results: Out of 71182 patients with asthma, 1006 (1.41%) suffered from COVID-19. Compared to asthmatic individuals without COVID-19, patients with asthma and COVID-19 were significantly older (55 versus 42 years), predominantly female (66% versus 59%), smoked more frequently and had higher prevalence of hypertension, dyslipidaemias, diabetes and obesity. Allergy-related factors such as rhinitis and eczema were less common in asthmatic patients with COVID-19 (p<0.001). In addition, higher prevalence of these comorbidities was observed in patients with COVID-19 who required hospital admission. The use of inhaled corticosteroids (ICS) was lower in patients who required hospitalisation due to COVID-19, as compared to non-hospitalised patients (48.3% versus 61.5%; OR 0.58, 95% CI 0.44-0.77). Although patients treated with biologics (n=865; 1.21%) showed increased severity and more comorbidities at the ear, nose and throat level, COVID-19-related hospitalisations in these patients were relatively low (0.23%). Conclusion: Patients with asthma and COVID-19 were older and at increased risk due to comorbidity-related factors. ICS and biologics are generally safe and may be associated with a protective effect against severe COVID-19 infectionGrant COVID-19 UAH 2019/00003/016/001/005 from the University of Alcalá (Spain

    Coupling between the prelimbic cortex, nucleus reuniens, and hippocampus during NREM sleep remains stable under cognitive and homeostatic demands.

    No full text
    The interplay between the medial prefrontal cortex and hippocampus during non-REM (NREM) sleep contributes to the consolidation of contextual memories. To assess the role of the thalamic nucleus reuniens (Nre) in this interaction, we investigated the coupling of neuro-oscillatory activities between prelimbic cortex, Nre, and hippocampus across sleep states and their role in the consolidation of contextual memories using multi-site electrophysiological recordings and optogenetic manipulations. We showed that ripples are time-locked to the Up state of cortical slow waves, the transition from Up to Down state in thalamic slow waves, the troughs of cortical spindles, and the peaks of thalamic spindles during spontaneous sleep, rebound sleep, and sleep following a fear conditioning task. In addition, spiking activity in Nre increased before hippocampal ripples and the phase-locking of hippocampal ripples and thalamic spindles during NREM sleep was stronger after acquisition of a fear memory. We showed that optogenetic inhibition of Nre neurons reduced phase-locking of ripples to cortical slow waves in the ventral hippocampus while their activation altered the preferred phase of ripples to slow waves in ventral and dorsal hippocampi. However, none of these optogenetic manipulations of Nre during sleep after acquisition of fear conditioning did alter sleep-dependent memory consolidation. Collectively, these results showed that Nre is central in modulating hippocampus and cortical rhythms during NREM sleep

    Symptoms timeline and outcomes in amyotrophic lateral sclerosis using artificial intelligence

    No full text
    Abstract Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative motor neuron disease. Although an early diagnosis is crucial to provide adequate care and improve survival, patients with ALS experience a significant diagnostic delay. This study aimed to use real-world data to describe the clinical profile and timing between symptom onset, diagnosis, and relevant outcomes in ALS. Retrospective and multicenter study in 5 representative hospitals and Primary Care services in the SESCAM Healthcare Network (Castilla-La Mancha, Spain). Using Natural Language Processing (NLP), the clinical information in electronic health records of all patients with ALS was extracted between January 2014 and December 2018. From a source population of all individuals attended in the participating hospitals, 250 ALS patients were identified (61.6% male, mean age 64.7 years). Of these, 64% had spinal and 36% bulbar ALS. For most defining symptoms, including dyspnea, dysarthria, dysphagia and fasciculations, the overall diagnostic delay from symptom onset was 11 (6–18) months. Prior to diagnosis, only 38.8% of patients had visited the neurologist. In a median post-diagnosis follow-up of 25 months, 52% underwent gastrostomy, 64% non-invasive ventilation, 16.4% tracheostomy, and 87.6% riluzole treatment; these were more commonly reported (all Ps < 0.05) and showed greater probability of occurrence (all Ps < 0.03) in bulbar ALS. Our results highlight the diagnostic delay in ALS and revealed differences in the clinical characteristics and occurrence of major disease-specific events across ALS subtypes. NLP holds great promise for its application in the wider context of rare neurological diseases

    Phenolic compounds in fruits - an overview

    No full text
    corecore