123 research outputs found

    Sporadic and genetic forms of paediatric somatotropinoma: a retrospective analysis of seven cases and a review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Somatotropinoma, a pituitary adenoma characterised by excessive production of growth hormone (GH), is extremely rare in childhood. A genetic defect is evident in some cases; known genetic changes include: multiple endocrine neoplasia type 1 (MEN1<it>)</it>; Carney complex; McCune-Albright syndrome; and, more recently identified, aryl hydrocarbon receptor-interacting protein (AIP). We describe seven children with somatotropinoma with a special focus on the differences between genetic and sporadic forms.</p> <p>Methods</p> <p>Seven children who presented in our regional network between 1992 and 2008 were included in this retrospective analysis. First-type therapy was somatostatin (SMS) analogues or transsphenoidal surgery. Control was defined as when insulin-like growth factor-1 (IGF-1) levels were within the normal range for the patient's age at 6 months after therapy, associated with decreasing tumour volume.</p> <p>Results</p> <p>Patients were aged 5-17 years and the majority (n = 6) were male. Four patients had an identified genetic mutation (McCune-Albright syndrome: n = 1; MEN1: n = 1; AIP: n = 2); the remaining three cases were sporadic. Accelerated growth rate was reported as the first clinical sign in four patients. Five patients presented with macroadenoma; invasion was noted in four of them (sporadic: n = 1; genetic: n = 3). Six patients were treated with SMS analogues; normalisation of IGF-1 occurred in one patient who had a sporadic intrasellar macroadenoma. Multiple types of therapy were necessary in all patients with an identified genetic mutation (4 types: n = 1; 3 types: n = 2; 2 types: n = 1), whereas two of the three patients with sporadic somatotropinoma required only one type of therapy.</p> <p>Conclusions</p> <p>This is the first series that analyzes the therapeutic response of somatotropinoma in paediatric patients with identified genetic defects. We found that, in children, genetic somatotropinomas are more invasive than sporadic somatotropinomas. Furthermore, SMS analogues appear to be less effective for treating genetic somatotropinoma than sporadic somatotropinoma.</p

    Prostacyclin reverses platelet stress fibre formation causing platelet aggregate instability

    Get PDF
    Prostacyclin (PGI2) modulates platelet activation to regulate haemostasis. Evidence has emerged to suggest that thrombi are dynamic structures with distinct areas of differing platelet activation. It was hypothesised that PGI2 could reverse platelet spreading by actin cytoskeletal modulation, leading to reduced capability of platelet aggregates to withstand a high shear environment. Our data demonstrates that post-flow of PGI2 over activated and spread platelets on fibrinogen, identified a significant reduction in platelet surface area under high shear. Exploration of the molecular mechanisms underpinning this effect revealed that PGI2 reversed stress fibre formation in adherent platelets, reduced platelet spreading, whilst simultaneously promoting actin nodule formation. The effects of PGI2 on stress fibres were mimicked by the adenylyl cyclase activator forskolin and prevented by inhibitors of protein kinase A (PKA). Stress fibre formation is a RhoA dependent process and we found that treatment of adherent platelets with PGI2 caused inhibitory phosphorylation of RhoA, reduced RhoA GTP-loading and reversal of myosin light chain phosphorylation. Phospho-RhoA was localised in actin nodules with PKA type II and a number of other phosphorylated PKA substrates. This study demonstrates that PGI2 can reverse key platelet functions after their initial activation and identifies a novel mechanism for controlling thrombosis

    The Host Range of Gammaretroviruses and Gammaretroviral Vectors Includes Post-Mitotic Neural Cells

    Get PDF
    Gammaretroviruses and gammaretroviral vectors, in contrast to lentiviruses and lentiviral vectors, are reported to be restricted in their ability to infect growth-arrested cells. The block to this restriction has never been clearly defined. The original assessment of the inability of gammaretroviruses and gammaretroviral vectors to infect growth-arrested cells was carried out using established cell lines that had been growth-arrested by chemical means, and has been generalized to neurons, which are post-mitotic. We re-examined the capability of gammaretroviruses and their derived vectors to efficiently infect terminally differentiated neuroendocrine cells and primary cortical neurons, a target of both experimental and therapeutic interest.Using GFP expression as a marker for infection, we determined that both growth-arrested (NGF-differentiated) rat pheochromocytoma cells (PC12 cells) and primary rat cortical neurons could be efficiently transduced, and maintained long-term protein expression, after exposure to murine leukemia virus (MLV) and MLV-based retroviral vectors. Terminally differentiated PC12 cells transduced with a gammaretroviral vector encoding the anti-apoptotic protein Bcl-xL were protected from cell death induced by withdrawal of nerve growth factor (NGF), demonstrating gammaretroviral vector-mediated delivery and expression of genes at levels sufficient for therapeutic effect in non-dividing cells. Post-mitotic rat cortical neurons were also shown to be susceptible to transduction by murine replication-competent gammaretroviruses and gammaretroviral vectors.These findings suggest that the host range of gammaretroviruses includes post-mitotic and other growth-arrested cells in mammals, and have implications for re-direction of gammaretroviral gene therapy to neurological disease

    Generation of Immortal Cell Lines from the Adult Pituitary: Role of cAMP on Differentiation of SOX2-Expressing Progenitor Cells to Mature Gonadotropes

    Get PDF
    The pituitary is a complex endocrine tissue composed of a number of unique cell types distinguished by the expression and secretion of specific hormones, which in turn control critical components of overall physiology. The basic function of these cells is understood; however, the molecular events involved in their hormonal regulation are not yet fully defined. While previously established cell lines have provided much insight into these regulatory mechanisms, the availability of representative cell lines from each cell lineage is limited, and currently none are derived from adult pituitary. We have therefore used retroviral transfer of SV40 T-antigen to mass immortalize primary pituitary cell culture from an adult mouse. We have generated 19 mixed cell cultures that contain cells from pituitary cell lineages, as determined by RT-PCR analysis and immunocytochemistry for specific hormones. Some lines expressed markers associated with multipotent adult progenitor cells or transit-amplifying cells, including SOX2, nestin, S100, and SOX9. The progenitor lines were exposed to an adenylate cyclase activator, forskolin, over 7 days and were induced to differentiate to a more mature gonadotrope cell, expressing significant levels of α-subunit, LHβ, and FSHβ mRNAs. Additionally, clonal populations of differentiated gonadotropes were exposed to 30 nM gonadotropin-releasing hormone and responded appropriately with a significant increase in α-subunit and LHβ transcription. Further, exposure of the lines to a pulse paradigm of GnRH, in combination with 17β-estradiol and dexamethasone, significantly increased GnRH receptor mRNA levels. This array of adult-derived pituitary cell models will be valuable for both studies of progenitor cell characteristics and modulation, and the molecular analysis of individual pituitary cell lineages

    Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice

    Get PDF
    Neural tube defects (NTDs) are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP) pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2(Lp), Scrib(Crc) and Celsr1(Crsh) mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1(Crsh);Vangl2(Lp);Scrib(Crc) triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas Scrib(Crc) is a null mutant and produces no Scrib protein, Celsr1(Crsh) and Vangl2(Lp) homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic interactions are of direct relevance to human patients and emphasize the importance of performing comprehensive genetic screens in humans

    DeltaNp73 transcription factors modulate cell survival and tumor development

    No full text
    The p73 locus encodes two types of transcription factors: full length pro-apoptotic isoforms (TAp73), and N-terminally truncated anti-apoptotic proteins (DeltaNp73). To study the function of DeltaNp73 in vivo, we generated mutant mice in which DeltaNp73 is inactivated, but TAp73 expression is intact. In addition, we knocked in the locus the Cre recombinase, and the enhanced green fluorescent protein (EGFP). Using this allele, we refined the expression of DeltaNp73 during brain development and emphasized the importance of the thalamic eminence, a transient source that contributes neurons to the telencephalon. We showed that DeltaNp73 inactivation increases apoptosis in neurons. (1) We also investigated the role of DeltaNp73 in carcinogenesis by inducing tumors with methylcholanthrene in mutant and control mice, and found that mutant females, but not males, have decreased propensity to tumor development. Both effects on neuronal apoptosis and tumor development were milder than predicted from in vitro studies
    corecore