118 research outputs found

    Optimal values of rovibronic energy levels for triplet electronic states of molecular deuterium

    Full text link
    Optimal set of 1050 rovibronic energy levels for 35 triplet electronic states of D2D_2 has been obtained by means of a statistical analysis of all available wavenumbers of triplet-triplet rovibronic transitions studied in emission, absorption, laser and anticrossing spectroscopic experiments of various authors. We used a new method of the analysis (Lavrov, Ryazanov, JETP Letters, 2005), which does not need any \it a priory \rm assumptions concerning the molecular structure being based on only two fundamental principles: Rydberg-Ritz and maximum likelihood. The method provides the opportunity to obtain the RMS estimates for uncertainties of the experimental wavenumbers independent from those presented in original papers. 234 from 3822 published wavenumber values were found to be spurious, while the remaining set of the data may be divided into 20 subsets (samples) of uniformly precise data having close to normal distributions of random errors within the samples. New experimental wavenumber values of 125 questionable lines were obtained in the present work. Optimal values of the rovibronic levels were obtained from the experimental data set consisting of 3713 wavenumber values (3588 old and 125 new). The unknown shift between levels of ortho- and para- deuterium was found by least squares analysis of the a3ÎŁg+a^3\Sigma_g^+, v=0v = 0, N=0Ă·18N = 0 \div 18 rovibronic levels with odd and even values of NN. All the energy levels were obtained relative to the lowest vibro-rotational level (v=0v = 0, N=0N = 0) of the a3ÎŁg+a^3\Sigma_g^+ electronic state, and presented in tabular form together with the standard deviations of the empirical determination. New energy level values differ significantly from those available in literature.Comment: 46 pages, 9 picture

    On the measurement of laser-induced plasma breakdown thresholds

    Get PDF
    The breakdown threshold of a gas exposed to intense laser-radiation is a function of gas and laser properties. Breakdown thresholds reported in the literature often vary greatly and these differences can partially be traced back to the method that is typically used to determine breakdown thresholds. This paper discusses the traditional method used to determine breakdown thresholds and the potential errors that can arise using this approach, and presents an alternative method which can yield more accurate data especially when determining breakdown thresholds as functions of gas pressure

    Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands

    Full text link
    We have built a line list in the near-infrared J and H bands (1.00-1.34, 1.49-1.80 um) by gathering a series of laboratory and computed line lists. Oscillator strengths and damping constants were computed or obtained by fitting the solar spectrum. The line list presented in this paper is, to our knowledge, the most complete one now available, and supersedes previous lists.Comment: Accepted, Astrophysical Journal Supplement, tentatively scheduled for the Sep. 1999 Vol. 124 #1 issue. Text and tables also available at http://www.iagusp.usp.br/~jorge

    Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale crater, Mars

    Get PDF
    H₂O, CO₂, SO₂, O₂, H₂, H₂S, HCl, chlorinated hydrocarbons, NO and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H₂O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO₂. Concurrent evolution of O₂ and chlorinated hydrocarbons suggest the presence of oxychlorine phase(s). Sulfides are likely sources for S-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic C sources may be preserved in the mudstone; however, the C source for the chlorinated hydrocarbons is not definitively of martian origin

    A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    The Curiosity rover discovered fine-grained sedimentary rocks, inferred to represent an ancient lake, preserve evidence of an environment that would have been suited to support a Martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. C, H, O, S, N, and P were measured directly as key biogenic elements, and by inference N and P are assumed to have been available. The environment likely had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars
    • 

    corecore