908 research outputs found
Wave shapes in alternating DSC
ADSC with its periodical temperature programs combines the features of DSC measured at high heating rate (high sensitivity) with those at low heating rate (high temperature resolution). In addition, the "reversing” cp effects can be separated from the "non-reversing” latent heat effects. Various periodical temperature programs can be applied. This paper compares the different possible temperature programs and their algorithms for the cp determination for metal, metal oxide and polymer of various properties. Simulated and measured results for various wave shapes and samples are presented. The relevant sample properties and their influence on the measurements are identified and guiding rules for the proper choice of the various experimental parameters are given. Measurements with different samples, performed with the new METTLER TOLEDO STARe-System, are shown and compared with the simulation results. The simulations and the measurements clearly show that the alternating techniques can yield new information about sample properties, but are susceptible to the proper choice of the various experimental parameter
Offline Signature Verification by Combining Graph Edit Distance and Triplet Networks
Biometric authentication by means of handwritten signatures is a challenging
pattern recognition task, which aims to infer a writer model from only a
handful of genuine signatures. In order to make it more difficult for a forger
to attack the verification system, a promising strategy is to combine different
writer models. In this work, we propose to complement a recent structural
approach to offline signature verification based on graph edit distance with a
statistical approach based on metric learning with deep neural networks. On the
MCYT and GPDS benchmark datasets, we demonstrate that combining the structural
and statistical models leads to significant improvements in performance,
profiting from their complementary properties
Predicting the whispering gallery mode spectra of microresonators
The whispering gallery modes (WGMs) of optical resonators have prompted
intensive research efforts due to their usefulness in the field of biological
sensing, and their employment in nonlinear optics. While much information is
available in the literature on numerical modeling of WGMs in microspheres, it
remains a challenging task to be able to predict the emitted spectra of
spherical microresonators. Here, we establish a customizable Finite- Difference
Time-Domain (FDTD)-based approach to investigate the WGM spectrum of
microspheres. The simulations are carried out in the vicinity of a dipole
source rather than a typical plane-wave beam excitation, thus providing an
effective analogue of the fluorescent dye or nanoparticle coatings used in
experiment. The analysis of a single dipole source at different positions on
the surface or inside a microsphere, serves to assess the relative efficiency
of nearby radiating TE and TM modes, characterizing the profile of the
spectrum. By varying the number, positions and alignments of the dipole
sources, different excitation scenarios can be compared to analytic models, and
to experimental results. The energy flux is collected via a nearby disk-shaped
region. The resultant spectral profile shows a dependence on the configuration
of the dipole sources. The power outcoupling can then be optimized for specific
modes and wavelength regions. The development of such a computational tool can
aid the preparation of optical sensors prior to fabrication, by preselecting
desired the optical properties of the resonator.Comment: Approved version for SPIE Photonics West, LASE, Laser Resonators,
Microresonators and Beam Control XV
Method for predicting whispering gallery mode spectra of spherical microresonators
A full three-dimensional Finite-Difference Time-Domain (FDTD)-based toolkit
is developed to simulate the whispering gallery modes of a microsphere in the
vicinity of a dipole source. This provides a guide for experiments that rely on
efficient coupling to the modes of microspheres. The resultant spectra are
compared to those of analytic models used in the field. In contrast to the
analytic models, the FDTD method is able to collect flux from a variety of
possible collection regions, such as a disk-shaped region. The customizability
of the technique allows one to consider a variety of mode excitation scenarios,
which are particularly useful for investigating novel properties of optical
resonators, and are valuable in assessing the viability of a resonator for
biosensing.Comment: Published 10 Apr 2015 in Opt. Express Vol. 23, Issue 8, pp.
9924-9937; The FDTD toolkit supercomputer scripts are hosted at:
http://sourceforge.net/projects/npps/files/FDTD_WGM_Simulator
Research on oxygen toxicity at the cellular level Final report, 15 Apr. 1965 - 15 Jun. 1966
Oxygen toxicity at cellular level in manned spacecraf
Automatic human action recognition in videos by graph embedding
The problem of human action recognition has received increasing attention in recent years for its importance in many applications. Yet, the main limitation of current approaches is that they do not capture well the spatial relationships in the subject performing the action. This paper presents an initial study which uses graphs to represent the actor's shape and graph embedding to then convert the graph into a suitable feature vector. In this way, we can benefit from the wide range of statistical classifiers while retaining the strong representational power of graphs. The paper shows that, although the proposed method does not yet achieve accuracy comparable to that of the best existing approaches, the embedded graphs are capable of describing the deformable human shape and its evolution along the time. This confirms the interesting rationale of the approach and its potential for future performance. © 2011 Springer-Verlag
Isolation and structure of rolliniastatin 2 : a new cell growth inhibitory acetogenin from Rollinia mucosa
Un nouvel inhibiteur de la croissance cellulaire, dénommé Rolliniastatine 2 a été isolé des graines de #Rollinia mucosa$ et sa structure déterminée. (Résumé d'auteur
Modal analysis of holey fiber mode-selective couplers
Mode Division Multiplexing is currently investigated as a possible way to increase fiber system capacity. With this approach, different modes of the same fiber carry distinct information. One of the problems to be solved in these systems concerns coupling/decoupling of the various modes to/from the same fiber. In this presentation, the mode features of a mode mux/demux based on holey fibers are investigated, with particular emphasis on optimal device design. Some preliminary experimental results will also be presented
Search for Gravitational Wave Bursts from Soft Gamma Repeaters
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first
search sensitive to neutron star f-modes, usually considered the most efficient
GW emitting modes. We find no evidence of GWs associated with any SGR burst in
a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190
lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first
year of LIGO's fifth science run. GW strain upper limits and model-dependent GW
emission energy upper limits are estimated for individual bursts using a
variety of simulated waveforms. The unprecedented sensitivity of the detectors
allows us to set the most stringent limits on transient GW amplitudes published
to date. We find upper limit estimates on the model-dependent isotropic GW
emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52
erg depending on waveform type, detector antenna factors and noise
characteristics at the time of the burst. These upper limits are within the
theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
- …
