18 research outputs found

    RNase E and the High-Fidelity Orchestration of RNA Metabolism.

    Get PDF
    The bacterial endoribonuclease RNase E occupies a pivotal position in the control of gene expression, as its actions either commit transcripts to an irreversible fate of rapid destruction or unveil their hidden functions through specific processing. Moreover, the enzyme contributes to quality control of rRNAs. The activity of RNase E can be directed and modulated by signals provided through regulatory RNAs that guide the enzyme to specific transcripts that are to be silenced. Early in its evolutionary history, RNase E acquired a natively unfolded appendage that recruits accessory proteins and RNA. These accessory factors facilitate the activity of RNase E and include helicases that remodel RNA and RNA-protein complexes, and polynucleotide phosphorylase, a relative of the archaeal and eukaryotic exosomes. RNase E also associates with enzymes from central metabolism, such as enolase and aconitase. RNase E-based complexes are diverse in composition, but generally bear mechanistic parallels with eukaryotic machinery involved in RNA-induced gene regulation and transcript quality control. That these similar processes arose independently underscores the universality of RNA-based regulation in life. Here we provide a synopsis and perspective of the contributions made by RNase E to sustain robust gene regulation with speed and accuracy.Wellcome Trus

    Role of RNA Structure and Susceptibility to RNase E in Regulation of a Cold Shock mRNA, cspA mRNAâ–¿

    No full text
    Degradation of the cspA mRNA in vivo is very rapid at temperatures greater than 30°C and is moderately dependent on RNase E. Investigations in vitro show that degradosomes prepared from normal or cold-shocked cultures cleave the cspA mRNA preferentially at a single site in vitro between two stem-loops ∼24 residues 3′ to the termination codon and ∼31 residues from the 3′ end. The site of cleavage is independent of the temperature and largely independent of the phosphorylation status of the 5′ end of cspA mRNA. A 5′ stem-loop, potential occlusion of the initiation and termination codons, temperature-dependent translational efficiency, and the position of the RNase E cleavage site can explain the differential stability of the cspA mRNA

    Helicase Activity Plays a Crucial Role for RNase R Function in Vivo and for RNA Metabolism

    No full text
    RNase R is a 3′ to 5′ hydrolytic exoribonuclease that has the unusual ability to digest highly structured RNA. The enzyme possesses an intrinsic, ATP-dependent RNA helicase activity that is essential in vitro for efficient nuclease activity against double-stranded RNA substrates, particularly at lower temperatures, with more stable RNA duplexes, and for duplexes with short 3′ overhangs. Here, we inquired whether the helicase activity was also important for RNase R function in vivo and for RNA metabolism. We find that strains containing a helicase-deficient RNase R due to mutations in its ATP-binding Walker motifs exhibit growth defects at low temperatures. Most importantly, cells also lacking polynucleotide phosphorylase (PNPase), and dependent for growth on RNase R, grow extremely poorly at 34, 37, and 42 °C and do not grow at all at 31 °C. Northern analysis revealed that in these cells, fragments of 16S and 23S rRNA accumulate to high levels, leading to interference with ribosome maturation and ultimately to cell death. These findings indicate that the intrinsic helicase activity of RNase R is required for its proper functioning in vivo and for effective RNA metabolism
    corecore