73 research outputs found

    Glutarate and N-acetyl-L-glutamate buffers for cell-free synthesis of selectively 15N-labelled proteins

    Get PDF
    Cell-free protein synthesis provides rapid and economical access to selectively 15N-labelled proteins, greatly facilitating the assignment of 15N-HSQC spectra. While the best yields are usually obtained with buffers containing high concentrations of potassium L-glutamate, preparation of selectively 15N-Glu labelled samples requires non-standard conditions. Among many compounds tested to replace the L-Glu buffer, potassium N-acetyl-L-glutamate and potassium glutarate were found to perform best, delivering high yields for all proteins tested, with preserved selectivity of 15N-Glu labelling. Assessment of amino-transferase activity by combinatorial 15N-labelling revealed that glutarate and N-acetyl-L-glutamate suppress the transfer of the 15N-alpha-amino groups between amino acids less well than the conventional L-Glu buffer. On balance, the glutarate buffer appears most suitable for the preparation of samples containing 15N-L-Glu while the conventional L-Glu buffer is advantageous for all other samples

    A novel zinc-binding fold in the helicase interaction domain of the Bacillus subtilis DnaI helicase loader

    Get PDF
    The helicase loader protein DnaI (the Bacillus subtilis homologue of Escherichia coli DnaC) is required to load the hexameric helicase DnaC (the B. subtilis homologue of E. coli DnaB) onto DNA at the start of replication. While the C-terminal domain of DnaI belongs to the structurally well-characterized AAA+ family of ATPases, the structure of the N-terminal domain, DnaI-N, has no homology to a known structure. Three-dimensional structure determination by nuclear magnetic resonance (NMR) spectroscopy shows that DnaI presents a novel fold containing a structurally important zinc ion. Surface plasmon resonance experiments indicate that DnaI-N is largely responsible for binding of DnaI to the hexameric helicase from B. stearothermophilus, which is a close homologue of the corresponding much less stable B. subtilis helicase

    The unstructured C-terminus of the τ subunit of Escherichia coli DNA polymerase III holoenzyme is the site of interaction with the α subunit

    Get PDF
    The τ subunit of Escherichia coli DNA polymerase III holoenzyme interacts with the α subunit through its C-terminal Domain V, τC16. We show that the extreme C-terminal region of τC16 constitutes the site of interaction with α. The τC16 domain, but not a derivative of it with a C-terminal deletion of seven residues (τC16Δ7), forms an isolable complex with α. Surface plasmon resonance measurements were used to determine the dissociation constant (KD) of the α−τC16 complex to be ∼260 pM. Competition with immobilized τC16 by τC16 derivatives for binding to α gave values of KD of 7 μM for the α−τC16Δ7 complex. Low-level expression of the genes encoding τC16 and τC16▵7, but not τC16Δ11, is lethal to E. coli. Suppression of this lethal phenotype enabled selection of mutations in the 3′ end of the τC16 gene, that led to defects in α binding. The data suggest that the unstructured C-terminus of τ becomes folded into a helix–loop–helix in its complex with α. An N-terminally extended construct, τC24, was found to bind DNA in a salt-sensitive manner while no binding was observed for τC16, suggesting that the processivity switch of the replisome functionally involves Domain IV of τ

    Biosynthetically directed 2 H labelling for stereospecific resonance assignments of glycine methylene groups

    No full text
    Stereospecific resonance assignments of the α-protons of glycine are often difficult to obtain by measurements of scalar coupling constants or nuclear Overhauser effects. Here we show that these stereospecific resonance assignments can readily be obtain

    High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites

    Get PDF
    Using aminoacyl-tRNA synthetase/suppressor tRNA pairs derived from Methanocaldococcus jannaschii, an Escherichia coli cell-free protein production system affords proteins with site-specifically incorporated unnatural amino acids (UAAs) in high yields through the use of optimized amber suppressor tRNACUA opt and optimization of reagent concentrations. The efficiency of the cell-free system allows the incorporation of trifluoromethyl-phenylalanine using a polyspecific synthetase evolved previously for p-cyanophenylalanine, and the incorporation of UAAs at two different sites of the same protein without any re-engineering of the E. coli cells used to make the cell-free extract

    [Ln(DPA) 3 ] 3- is a convenient paramagnetic shift reagent for protein NMR studies

    No full text
    (Chemical Equation Presented) Paramagnetic lanthanide ions present outstanding tools for structural biology by NMR spectroscopy. Here we show that the 3:1 complexes between dipicolinic acid and lanthanides are paramagnetic reagents which can site-specifically bind to a wide range of proteins without formation of a covalent bond. The observed pseudocontact shifts can be interpreted by a single magnetic susceptibility anisotropy tensor, enabling its use for structure refinements. The resonance assignment of the paramagnetic spectrum is greatly facilitated by the rapid exchange between bound and free protein, leading to gradual chemical shift changes as the protein is titrated with the paramagnetic dipicolinic acid complex. The association with the paramagnetic lanthanide leads to weak molecular alignment in a magnetic field so that the reagents can be used for the measurement of residual dipolar couplings without the need of protein modification or anisotropic alignment media. The protein samples can be recovered by simple dialysis

    Glutarate and N-acetyl-L-glutamate buffers for cell-free synthesis of selectively 15N-labelled proteins

    No full text
    Cell-free protein synthesis provides rapid and economical access to selectively N-labelled proteins, greatly facilitating the assignment of N-HSQC spectra. While the best yields are usually obtained with buffers containing high concentrations of potassium L-glutamate, preparation of selectively N-Glu labelled samples requires non-standard conditions. Among many compounds tested to replace the L-Glu buffer, potassium N-acetyl-L-glutamate and potassium glutarate were found to perform best, delivering high yields for all proteins tested, with preserved selectivity of N- Glu labelling. Assessment of amino-transferase activity by combinatorial N-labelling revealed that glutarate and N-acetyl-L-glutamate suppress the transfer of the N- α-amino groups between amino acids less well than the conventional L-Glu buffer. On balance, the glutarate buffer appears most suitable for the preparation of samples containing N-L-Glu while the conventional L-Glu buffer is advantageous for all other samples
    corecore