1,877 research outputs found

    NEMO regulates a cell death switch in TNF signaling by inhibiting recruitment of RIPK3 to the cell death-inducing complex II

    Get PDF
    Incontinentia Pigmenti (IP) is a rare X-linked disease characterized by early male lethality and multiple abnormalities in heterozygous females. IP is caused by NF-κB essential modulator (NEMO) mutations. The current mechanistic model suggests that NEMO functions as a crucial component mediating the recruitment of the IκB-kinase (IKK) complex to tumor necrosis factor receptor 1 (TNF-R1), thus allowing activation of the pro-survival NF-κB response. However, recent studies have suggested that gene activation and cell death inhibition are two independent activities of NEMO. Here we describe that cells expressing the IP-associated NEMO-A323P mutant had completely abrogated TNF-induced NF-κB activation, but retained partial antiapoptotic activity and exhibited high sensitivity to death by necroptosis. We found that robust caspase activation in NEMO-deficient cells is concomitant with RIPK3 recruitment to the apoptosis-mediating complex. In contrast, cells expressing the ubiquitin-binding mutant NEMO-A323P did not recruit RIPK3 to complex II, an event that prevented caspase activation. Hence NEMO, independently from NF-κB activation, represents per se a key component in the structural and functional dynamics of the different TNF-R1-induced complexes. Alteration of this process may result in differing cellular outcomes and, consequently, also pathological effects in IP patients with different NEMO mutations

    A simple asthma prediction tool for preschool children with wheeze or cough

    Get PDF
    BACKGROUND Many preschool children have wheeze or cough, but only some have asthma later. Existing prediction tools are difficult to apply in clinical practice or exhibit methodological weaknesses. OBJECTIVE We sought to develop a simple and robust tool for predicting asthma at school age in preschool children with wheeze or cough. METHODS From a population-based cohort in Leicestershire, United Kingdom, we included 1- to 3-year-old subjects seeing a doctor for wheeze or cough and assessed the prevalence of asthma 5 years later. We considered only noninvasive predictors that are easy to assess in primary care: demographic and perinatal data, eczema, upper and lower respiratory tract symptoms, and family history of atopy. We developed a model using logistic regression, avoided overfitting with the least absolute shrinkage and selection operator penalty, and then simplified it to a practical tool. We performed internal validation and assessed its predictive performance using the scaled Brier score and the area under the receiver operating characteristic curve. RESULTS Of 1226 symptomatic children with follow-up information, 345 (28%) had asthma 5 years later. The tool consists of 10 predictors yielding a total score between 0 and 15: sex, age, wheeze without colds, wheeze frequency, activity disturbance, shortness of breath, exercise-related and aeroallergen-related wheeze/cough, eczema, and parental history of asthma/bronchitis. The scaled Brier scores for the internally validated model and tool were 0.20 and 0.16, and the areas under the receiver operating characteristic curves were 0.76 and 0.74, respectively. CONCLUSION This tool represents a simple, low-cost, and noninvasive method to predict the risk of later asthma in symptomatic preschool children, which is ready to be tested in other populations

    Measurements of Aperture Averaging on Bit-Error-Rate

    Get PDF
    We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments

    Ammonia Emissions from Twelve U.S. Broiler Chicken Houses

    Get PDF
    Twelve commercial broiler houses in the U.S. were each monitored for at least thirteen 48 h periods over the course of one year to obtain ammonia emission data. Paired repetition of houses on four farms represents current construction with variety in litter management (built-up or new litter each flock) and climate conditions (cold or mixed-humid). Ammonia concentration was determined using portable electrochemical sensors incorporating a fresh air purge cycle. Ventilation rate was determined via in-situ measurement of fan capacity, fan on-off times, and house static pressure difference. There were seasonal trends in exhaust ammonia concentration (highest in cold weather) and ventilation rates (highest in warm weather) but not for emission rate. Flocks with at least three monitoring periods (13 of 22 flocks) demonstrated similar emission rates at a given bird age among the four study farms and across the seasons. An analysis of emissions from all houses on the three farms using built-up litter resulted in predicted regression slopes of 0.028, 0.034, and 0.038 g NH3 bird-1 d-1 per day of age; the fourth farm, managed with new litter, had the lowest emission rate at 0.024 g NH3 bird-1 d-1. The intercept of these composite relationships was influenced by litter conditions, with flocks on new litter having essentially no emissions for about six days while built-up litter flocks had emissions starting at flock placement. Data from all four farms and all flocks provided a regression slope of 0.031(±0.001 std error) g NH3 bird-1 d-1 per day of age. Emission rate per animal unit for built-up litter flocks indicated very high emissions for the youngest birds (under 14 days of age), after which time the emissions decreased exponentially and were then relatively steady for the balance of the flock cycle

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Measurement of the Bs0J/ψηB_{s}^{0} \rightarrow J/\psi \eta lifetime

    Get PDF
    Using a data set corresponding to an integrated luminosity of 3fb13 fb^{-1}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV, the effective lifetime in the Bs0J/ψηB^0_s \rightarrow J/\psi \eta decay mode, τeff\tau_{\textrm{eff}}, is measured to be τeff=1.479±0.034 (stat)±0.011 (syst)\tau_{\textrm{eff}} = 1.479 \pm 0.034~\textrm{(stat)} \pm 0.011 ~\textrm{(syst)} ps. Assuming CPCP conservation, τeff\tau_{\textrm{eff}} corresponds to the lifetime of the light Bs0B_s^0 mass eigenstate. This is the first measurement of the effective lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm

    Observation of two new Ξb\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξb\Xi_b^{\prime -} and Ξb\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξb)m(Ξb0)m(π)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb)m(Ξb0)m(π)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξb)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Measurement of the mass and lifetime of the Ωb\Omega_b^- baryon

    Get PDF
    A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb1^{-1} collected by LHCb at s=7\sqrt{s}=7 and 8 TeV, is used to reconstruct 63±963\pm9 ΩbΩc0π\Omega_b^-\to\Omega_c^0\pi^-, Ωc0pKKπ+\Omega_c^0\to pK^-K^-\pi^+ decays. Using the ΞbΞc0π\Xi_b^-\to\Xi_c^0\pi^-, Ξc0pKKπ+\Xi_c^0\to pK^-K^-\pi^+ decay mode for calibration, the lifetime ratio and absolute lifetime of the Ωb\Omega_b^- baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for τΩb\tau_{\Omega_b^-} only). A measurement is also made of the mass difference, mΩbmΞbm_{\Omega_b^-}-m_{\Xi_b^-}, and the corresponding Ωb\Omega_b^- mass, which yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2. \end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
    corecore