1,082 research outputs found
Downeast Fisheries Trail: Celebrating the Fisheries Heritage of Downeast Maine, Then and Now
Road map of the Downeast Fisheries Trail from Penobscot to Passamaquoddy Bay, connecting historic and active fisheries sites that illustrate the region’s maritime heritage. Marine resources sustain the culture and economy of Downeast Maine. The Downeast Fisheries Trail builds on these local resources to strengthen community life and the experience of visitors. Map includes brief descriptions of 45 businesses, wharves, museums, and parks located along the trail
Progressive axonal dysfunction precedes development of neuropathy in type 2 Diabetes.
To evaluate the development of diabetic neuropathy, the current study examined changes in peripheral axonal function. Nerve excitability techniques were undertaken in 108 type 2 diabetic patients with nerve conduction studies (NCS), HbA(1c) levels, and total neuropathy score (TNS). Patients were categorized into two cohorts: patients with diabetes without neuropathy (DWN group [n = 56]) and patients with diabetes with neuropathy (DN group [n = 52]) and further into severity grade 0 (TNS 0-1 [n = 35]), grade 1 (TNS 2-8 [n = 42]), and grade 2/3 (TNS 9-24 [n = 31]). Results revealed that the DWN group had a significantly increased threshold, prolonged latency, and changes in excitability parameters compared with age-matched control subjects. Patients with neuropathy demonstrated significant alteration in recovery cycle parameters and depolarizing threshold electrotonus. Within the DWN cohort, there were significant correlations between HbA(1c) level and latency and subexcitability, whereas the estimated glomerular filtration rate correlated with superexcitability in patients with neuropathy. Furthermore, excitability parameters became progressively more abnormal with increasing clinical severity. These results suggest a spectrum of excitability abnormalities in patients with diabetes and that early axonal dysfunction may be detected prior to the development of neuropathy. As progressive changes in excitability parameters correlated to neuropathy severity, excitability testing may provide a biomarker of the early development and severity of diabetic neuropathy, providing insights into the pathophysiological mechanisms producing axonal dysfunction
Comprehensive behavioral testing in the R6/2 mouse model of Huntington's disease shows no benefit from CoQ10 or minocycline
Previous studies of the effects of coenzyme Q10 and minocycline on mouse models of Huntington’s disease have produced conflicting results regarding their efficacy in behavioral tests. Using our recently published best practices for husbandry and testing for mouse models of Huntington’s disease, we report that neither coenzyme Q10 nor minocycline had significant beneficial effects on measures of motor function, general health (open field, rotarod, grip strength, rearing-climbing, body weight and survival) in the R6/2 mouse model. The higher doses of minocycline, on the contrary, reduced survival. We were thus unable to confirm the previously reported benefits for these two drugs, and we discuss potential reasons for these discrepancies, such as the effects of husbandry and nutrition
Circulating tumor DNA reflects uveal melanoma responses to protein kinase C inhibition
The prognosis for patients with UM is poor, and recent clinical trials have failed to prolong overall survival (OS) of these patients. Over 95% of UM harbor activating driver mutations, and this allows for the investigation of ctDNA. In this study, we investigated the value of ctDNA for adaptive clinical trial design in metastatic UM. Longitudinal plasma samples were analyzed for ctDNA in 17 metastatic UM patients treated with PKCi-based therapy in a phase 1 clinical trial setting. Plasma ctDNA was assessed using digital droplet PCR (ddPCR) and a custom melanoma gene panel for targeted next generation sequencing (NGS). Baseline ctDNA strongly correlated with baseline lactate dehydrogenase (LDH) (p \u3c 0.001) and baseline disease burden (p = 0.002). Early during treatment (EDT) ctDNA accurately predicted patients with clinical benefit to PKCi using receiver operator characteristic (ROC) curves (AUC 0.84, [95% confidence interval 0.65–1.0, p = 0.026]). Longitudinal ctDNA assessment was informative for establishing clinical benefit and detecting disease progression with 7/8 (88%) of patients showing a rise in ctDNA and targeted NGS of ctDNA revealed putative resistance mechanisms prior to radiological progression. The inclusion of longitudinal ctDNA monitoring in metastatic UM can advance adaptive clinical trial design
Inhibition of Striatal Soluble Guanylyl Cyclase-cGMP Signaling Reverses Basal Ganglia Dysfunction and Akinesia in Experimental Parkinsonism
There is clearly a necessity to identify novel non-dopaminergic mechanisms as new therapeutic targets for Parkinson's disease (PD). Among these, the soluble guanylyl cyclase (sGC)-cGMP signaling cascade is emerging as a promising candidate for second messenger-based therapies for the amelioration of PD symptoms. In the present study, we examined the utility of the selective sGC inhibitor 1H-[1], [2], [4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) for reversing basal ganglia dysfunction and akinesia in animal models of PD.The utility of the selective sGC inhibitor ODQ for reversing biochemical, electrophysiological, histochemical, and behavioral correlates of experimental PD was performed in 6-OHDA-lesioned rats and mice chronically treated with MPTP.We found that one systemic administration of ODQ is sufficient to reverse the characteristic elevations in striatal cGMP levels, striatal output neuron activity, and metabolic activity in the subthalamic nucleus observed in 6-OHDA-lesioned rats. The latter outcome was reproduced after intrastriatal infusion of ODQ. Systemic administration of ODQ was also effective in improving deficits in forelimb akinesia induced by 6-OHDA and MPTP.Pharmacological inhibition of the sGC-cGMP signaling pathway is a promising non-dopaminergic treatment strategy for restoring basal ganglia dysfunction and attenuating motor symptoms associated with PD
Need for better and broader training in cardio-obstetrics: A national survey of cardiologists, cardiovascular team members, and cardiology fellows in training
Background Team-based models of cardio-obstetrics care have been developed to address the increasing rate of maternal mortality from cardiovascular diseases. Cardiovascular clinician and trainee knowledge and comfort with this topic, and the extent of implementation of an interdisciplinary approach to cardio-obstetrics, are unknown. Methods and Results We aimed to assess the current state of cardio-obstetrics knowledge, practices, and services provided by US cardiovascular clinicians and trainees. A survey developed in conjunction with the American College of Cardiology was circulated to a representative sample of cardiologists (N=311), cardiovascular team members (N=51), and fellows in training (N=139) from June 18, 2020, to July 29, 2020. Knowledge and attitudes about the provision of cardiovascular care to pregnant patients and the prevalence and composition of cardio-obstetrics teams were assessed. The widest knowledge gaps on the care of pregnant compared with nonpregnant patients were reported for medication safety (42%), acute coronary syndromes (39%), aortopathies (40%), and valvular heart disease (30%). Most respondents (76%) lack access to a dedicated cardio-obstetrics team, and only 29% of practicing cardiologists received cardio-obstetrics didactics during training. One third of fellows in training reported seeing pregnant women 0 to 1 time per year, and 12% of fellows in training report formal training in cardio-obstetrics. Conclusions Formalized training in cardio-obstetrics is uncommon, and limited access to multidisciplinary cardio-obstetrics teams and large knowledge gaps exist among cardiovascular clinicians. Augmentation of cardio-obstetrics education across career stages is needed to reduce these deficits. These survey results are an initial step toward developing a standard expectation for clinicians\u27 training in cardio-obstetrics
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
Parkin, an E3 ubiquitin ligase implicated in Parkinson's disease, promotes degradation of dysfunctional mitochondria by autophagy. Using proteomic and cellular approaches, we show that upon translocation to mitochondria, Parkin activates the ubiquitin–proteasome system (UPS) for widespread degradation of outer membrane proteins. This is evidenced by an increase in K48-linked polyubiquitin on mitochondria, recruitment of the 26S proteasome and rapid degradation of multiple outer membrane proteins. The degradation of proteins by the UPS occurs independently of the autophagy pathway, and inhibition of the 26S proteasome completely abrogates Parkin-mediated mitophagy in HeLa, SH-SY5Y and mouse cells. Although the mitofusins Mfn1 and Mfn2 are rapid degradation targets of Parkin, we find that degradation of additional targets is essential for mitophagy. These results indicate that remodeling of the mitochondrial outer membrane proteome is important for mitophagy, and reveal a causal link between the UPS and autophagy, the major pathways for degradation of intracellular substrates
Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum
As nonreplicating tubercle bacilli are tolerant to the cidal action of antibiotics and resistant to multiple stresses, identification of this persister-like population of tubercle bacilli in sputum presents exciting and tractable new opportunities to investigate both responses to chemotherapy and the transmission of tuberculosis
Kynurenine monooxygenase blockade reduces endometriosis-like lesions, improves visceral hyperalgesia, and rescues mice from a negative behavioural phenotype in experimental endometriosis.
Endometriosis is a common and debilitating neuro-inflammatory disorder that is associated with chronic pain. Definitive diagnosis is based on the presence of endometrial-like tissue (lesions) in sites outside the uterus. Kynurenine monooxygenase (KMO) is a mitochondrial enzyme of tryptophan metabolism that regulates inflammation and immunity. Here, we show that KMO is expressed in epithelial cells in human endometriosis tissue lesions and in corresponding lesions in a mouse model of endometriosis. In mice, oral treatment with the potent KMO inhibitor KNS898 induced a biochemical state of KMO blockade with accumulation of kynurenine, diversion to kynurenic acid and ablation of 3-hydroxykynurenine production. In the mouse model of endometriosis, KMO inhibition improved histological outcomes and endometriosis pain-like behaviours, even when KNS898 treatment commenced one week after initiation of lesions. Taken together, these results suggest that KMO blockade is a promising new non-hormonal therapeutic modality for endometriosis
- …