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Simple Summary: Uveal melanoma (UM) is a rare cancer, with no effective standard systemic ther-
apy in the metastatic setting. Over 95% of UM harbor activating driver mutations that can be detected
in the circulation. In this study, circulating tumor DNA (ctDNA) was measured in 17 metastatic UM
patients treated with protein kinase C inhibitor (PKCi)-based therapy. ctDNA predicted response to
targeted therapy and increasing UM ctDNA preceded radiological progression with a lead-time of
4–10 weeks. Next generation sequencing (NGS) of ctDNA also identified prognostic and treatment
resistance mutations. Longitudinal ctDNA monitoring is useful for monitoring disease response and
progression in metastatic UM and is a valuable addition to adaptive clinical trial design.

Abstract: The prognosis for patients with UM is poor, and recent clinical trials have failed to prolong
overall survival (OS) of these patients. Over 95% of UM harbor activating driver mutations, and
this allows for the investigation of ctDNA. In this study, we investigated the value of ctDNA for
adaptive clinical trial design in metastatic UM. Longitudinal plasma samples were analyzed for
ctDNA in 17 metastatic UM patients treated with PKCi-based therapy in a phase 1 clinical trial
setting. Plasma ctDNA was assessed using digital droplet PCR (ddPCR) and a custom melanoma
gene panel for targeted next generation sequencing (NGS). Baseline ctDNA strongly correlated
with baseline lactate dehydrogenase (LDH) (p < 0.001) and baseline disease burden (p = 0.002).
Early during treatment (EDT) ctDNA accurately predicted patients with clinical benefit to PKCi
using receiver operator characteristic (ROC) curves (AUC 0.84, [95% confidence interval 0.65–1.0,
p = 0.026]). Longitudinal ctDNA assessment was informative for establishing clinical benefit and
detecting disease progression with 7/8 (88%) of patients showing a rise in ctDNA and targeted NGS
of ctDNA revealed putative resistance mechanisms prior to radiological progression. The inclusion
of longitudinal ctDNA monitoring in metastatic UM can advance adaptive clinical trial design.

Keywords: uveal melanoma; circulating tumor DNA; next generation sequencing; PKC inhibitor;
liquid biopsy; treatment; response; melanoma
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1. Introduction

Uveal melanoma (UM) is the most common primary intraocular malignancy [1].
The tumor arises from melanocytes within the uveal tract, with more than 90% of cases
involving the choroid followed by iris and ciliary body [2]. UM is a rare cancer, affecting
approximately 5–7 individuals per million each year [1,3–5]. Despite successful local
treatment with either surgery or radiation therapy, approximately 50% of patients with
UM will develop metastatic disease [6] with over 90% of metastases occurring in the
liver [7]. Currently there is no effective systemic treatment in metastatic UM and the
median progression free survival (PFS) and overall survival (OS) are 3.3 months and
10.2 months, respectively [8].

Nearly 95% of UM harbor mutually exclusive activating driver mutations in GNAQ,
GNA11, CYSTLR2 and PLCβ4 genes [9–14]. Molecular profiling, cytogenetic and transcrip-
tomic analysis of UM have provided accurate prognostic information [9,15]. Additional hot
spot mutations affecting the EIF1AX and SF3B1 genes are associated with better prognosis
whereas loss of function BAP1 gene alterations are correlated with the development of UM
metastases and poor prognosis [9,16]. Somatic copy number alterations such as loss of
chromosome 3, 6q and 8q are also associated with poor prognosis [17]. The specific and
defined mutation profile of UM provides an excellent opportunity to investigate the utility
of circulating tumor DNA (ctDNA) as a biomarker to detect the presence of metastatic
disease and to rapidly monitor response to early-phase drug therapies.

In cutaneous melanoma (CM), baseline ctDNA is strongly correlated with tumor
burden in patients with advanced stage disease [18] and is associated with overall response
rate and PFS in patients treated with targeted therapies [18,19]. A decline in ctDNA within
8 weeks of treatment initiation also predicts response to both combined BRAF and MEK
inhibition and immunotherapy in CM [19,20]. In metastatic UM, ctDNA levels correlate
with tumor burden and the presence of liver metastases [21,22] and are also prognostic
for PFS and OS [21]. The value of ctDNA in monitoring and predicting response to
trial drug therapies has not, to the best of our knowledge, been previously investigated.
This is particularly relevant in metastatic UM as there are currently no effective systemic
treatments, but significant ongoing clinical trial activity evaluating novel therapies. In this
study, we sought to assess ctDNA in metastatic UM patients treated with protein kinase C
inhibitor (PKCi)-based therapy in a phase 1 clinical trial setting (NCT02601378). Using two
methods, droplet digital PCR (ddPCR) and targeted Ion Torrent next generation sequencing
(NGS), we evaluated the utility of plasma ctDNA in monitoring and predicting clinical
outcomes including best response to therapy and PFS.

2. Materials and Methods
2.1. Patients and Treatment

Seventeen patients with metastatic UM with known mutations in GNAQ, GNA11 and
CYSTLR2, treated with the novel PKCi, LXS196 (n = 17) at Westmead Hospital, Sydney,
Australia as part of an experimental dose escalation phase 1 clinical trial between November
2016 to August 2018 were included in this study. Written consent was obtained from all
patients with metastatic UM under approved Human Research ethics committee protocols
from Royal Prince Alfred Hospital (Protocol X15-0454 and HREC/11/RPAH/444).

2.2. Patient and Disease Characteristics and Response Assessment

Patient demographics and clinicopathologic features including mutation status, East-
ern Cooperative Oncology Group (ECOG) performance status, and baseline LDH levels
(units/litre; U/L) were collected. Baseline disease burden was determined by the sum
of the product of bi-dimensional diameters (SPOD) for every metastasis ≥5 mm in the
long axis (≥15 mm in the short axis for lymph nodes). Investigator-determined objective
responses were assessed radiologically with computed tomography (CT) scans at two
monthly intervals using Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 cri-
teria [23]. Clinical progression was defined by primary clinician’s assessment of disease
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progression in patients without re-staging imaging and were classified as progressive
disease (PD). Clinical benefit was defined by patients who had partial response (PR) or
stable disease (SD) for ≥6 months.

2.3. Plasma Preparation

Plasma samples were collected at baseline (prior to therapy start), EDT (early during
treatment between 14–30 days of commencing PKCi-based therapy) and at later time points
during therapy (on-treatment samples). PROG samples were defined as plasma samples
taken within 30 days (before or after) of disease progression confirmed by imaging or
clinical progression as determined by the treating clinician. NGS analysis was performed
on baseline plasma samples and on the last available on-treatment plasma sample. Blood
(10 mL) was collected in EDTA tubes (Becton Dickinson, Franklin Lakes, NJ, USA) and
processed within 4 h from blood draw. Tubes were spun at 800 g for 15 min for plasma
collection, followed by a second centrifugation at 1600 g for 10 min to remove cellular
debris. Plasma was stored in 1–2 mL aliquots at −80 ◦C.

2.4. Purification of Circulating Free DNA from Plasma

Plasma circulating free DNA was extracted using the QIAamp Circulating Nucleic
Acid Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Circu-
lating free DNA was purified from 1–4 mL of plasma and the final elution volume was
25 µL. Total circulating free DNA was quantified using a Qubit dsDNA high sensitivity
assay kit and a Qubit fluorometer 3 (Life Technologies, Carlsbad, CA, USA) according to
the manufacturer’s instructions.

2.5. ddPCR Analysis of ctDNA from Plasma

The copy number of ctDNA per milliliter of plasma was determined using the QX200
ddPCR system (Bio-Rad, Hercules, CA, USA), as previously described [20]. Commercially
available (GNAQ Q209P and GNA11 Q209L; Bio-Rad) and customized probes [22] (GNAQ
R183C and CYSTLR2 L129Q) were used to analyze ctDNA by ddPCR. The DNA copy
number/mL of plasma for mutant and wild-type circulating DNA species was determined
with QuantaSoft software version 1.7.4 (Bio-Rad, Hercules, CA, USA) using a manual
threshold setting. If analysis confirmed only 1 positive ctDNA mutant copy per 20 µL,
the ddPCR amplification was repeated up to three times, and the plasma sample was
considered positive if ctDNA was positive in at least two repeat experiments. ddPCR
results are reported as ctDNA copies/mL.

2.6. Custom Melanoma Gene Panel for Targeted NGS of Circulating Free DNA

An Ion Ampliseq HD made-to-order melanoma gene panel was obtained from Life
Technologies (Carlsbad, CA, USA). The panel, which consists of 123 amplicons and covers
melanoma-associated mutations in 30 gene targets, has been described previously [24].
This melanoma gene panel does not cover the BAP1 gene. DNA target amplification,
using 20 ng circulating free DNA as template, library construction and sequencing were
performed as previously described [24]. Ion Torrent NGS results in our study are reported
in mutant allele frequency (MAF).

2.7. Statistical Analysis

The Spearman rank correlation coefficient was used to test the correlation between
the ctDNA copies, and the baseline LDH level, baseline SPOD, or longest diameter of liver
metastatic lesion. Kruskal–Wallis test with Dunn’s multiple comparison test was used to
compare ctDNA copies in the clinical benefit group and no clinical benefit group. EDT
ctDNA copies to predict clinical benefit was measured using Receiver Operating Character-
istics (ROC) analysis. Statistical analyses were carried out using GraphPad Prism 9. Positive
predictive value for EDT > 16.35 copies/mL was calculated using the following formula:
Number of patients showing no clinical benefit with EDT ctDNA > 16.35 copies/mL divided



Cancers 2021, 13, 1740 4 of 14

by number of patients with EDT ctDNA > 16.35 copies/mL. Negative predictive value was
determined as follows: Number of responding patients with EDT ctDNA ≤ 16.35 copies/mL
divided by number of patients with EDT ctDNA ≤ 16.35 copies/mL.

3. Results
3.1. Patient Characteristics

Seventeen patients with metastatic UM were included in this study; 11 patients
received PKCi alone and six patients received PKCi in combination with the human
homolog of double minute 2 (HDM2) inhibitor (HDM201). Median follow-up duration
was 20.1 weeks (range 6.3–66.0 weeks). Baseline demographic data are detailed in Table 1.
The median age was 56 years and the majority of patients were male (10/17; 59%) with
an ECOG status of 0 (13/17; 76%). All patients had an established UM driver mutation
(GNAQ Q209P (35%), GNA11 Q209L (47%), GNAQ R183Q (12%) and CYSTLR2 L129Q
(6%)), and metastatic disease involving the liver. On commencement of the treatment,
11 (65%) patients had elevated LDH levels and 13 (76%) had prior systemic treatment. The
majority of patients (12/17; 70%) had a choroidal primary UM, 1 (6%) had an iris primary
tumor and for the remaining 4 (24%) patients, the additional component of the primary
tumor was unknown. Overall PFS was 3.8 months. Patients with RECIST 1.1 PR (2/17;
12%) or SD ≥ 6 months (4/17; 24%) were classified as the ‘clinical benefit’ group, while
patients with SD < 6 months (7/17; 41%) or PD (4/17; 24%) were classified as having ‘no
clinical benefit’ group (Table S1).

3.2. Baseline ctDNA Levels Are Associated with Tumor Volume and LDH Level

ctDNA was detected by ddPCR in 16/17 (94%) patients prior to commencing therapy.
Median ctDNA was 157.7 copies/mL with a range of 0–7172 copies/mL. Baseline ctDNA
was strongly correlated with baseline LDH (Spearman’s rank r = 0.7941, p < 0.001) and
baseline SPOD (Spearman’s rank r = 0.7206, p = 0.002) (Figure 1A,B). As expected, the
total lesion SPOD was significantly correlated to liver SPOD in these patients (Spearman’s
rank r = 0.8676, p < 0.01; Figure S1A); however, the baseline ctDNA did not correlate with
the longest diameter of liver lesion (Spearman’s rank r = 0.4027, p = 0.110) or liver SPOD
(p = 0.06, Spearman’s rank r = 0.4632) (Figure 1C,D). The discrepant correlation between
ctDNA versus total lesion SPOD and ctDNA versus liver SPOD was influenced by the
distribution of melanoma metastases in patient #6. This patient had multiple disease sites,
a relatively high overall tumor burden (6022 mm2), but very low liver disease (469 mm2)
(Figure S1A). When patient #6 was excluded, ctDNA levels were significantly correlated
with the longest diameter of liver lesion (Spearman’s rank r = 0.6455, p < 0.01) and liver
SPOD (Spearman’s rank r = 0.7176, p < 0.01).

We identified six patients in the clinical benefit group (PR, or SD≥ 6 months; including
5/6 (83%) patients treated with PKCi monotherapy) and eleven patients in the no clinical
benefit group (SD < 6 months or PD; including 6/11 (55%) patients treated with PKCi
monotherapy). Baseline ctDNA, SPOD and LDH were compared in the clinical benefit
versus no clinical benefit patient groups. Lower median baseline ctDNA was observed in
the clinical benefit group (33.8 copies/mL, range 0–333 copies/mL) compared to patients
in the no clinical benefit group (196.2 copies/mL, range 15–7172 copies/mL); however, this
difference was not statistically significant (Figure S1B). Similarly, LDH, median total SPOD,
longest diameter of liver lesion and LDH and liver SPOD were lower in the clinical benefit
versus no clinical benefit subset; however, these differences were not significantly different
(Figure S1B). The sample set was too small for multivariate analysis comparing baseline
ctDNA, LDH and SPOD to best response.
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Table 1. Baseline clinicopathologic characteristics of uveal melanoma patients.

Characteristics Patients (n = 17)

Age, Median (range) 56 (45–73)

Sex, n (%)
Male 10 (59%)

Female 7 (41%)

ECOG PS, n (%)
0 13 (76%)
≥1 4 (24%)

Mutation, n (%)
GNAQQ209P 6 (35%)
GNA11Q209L 8 (47%)
GNAQR183Q 2 (12%)

CYSTLR2L129Q 1 (6%)

Number of organs involved by metastatic disease, n (%)
1 3 (17%)

>1 14 (83%)

Liver metastases, n (%) 17 (100%)

LDH, n (%)
≤ULN 6 (35%)
>ULN 11 (65%)

Prior Systemic Treatment a

Yes 13 (76%)
No 4 (24%)

Primary Tumor Type
Choroidal 12 (70%)

Iris 1 (6%)
Unknown 4 (24%)

Treatment
PKCi alone 11 (65%)

PKCi + HDM2i 6 (35%)

Best Response b, n (%)
PR 2 (12%)

SD ≥ 6 months 4 (24%)
SD < 6 months 7 (41%)

PD 4 (23%)

PFS (months), median (range) 3.8 (1.7–13.1)

Number of liver lesions, median (range) 9 (1–49)

Liver SPOD (mm2), median (range) 3595 (200–15,525)

SPOD (mm2), median (range) 5986 (200–16,782)

Largest diameter of liver lesion (mm), median (range) 35 (11–110)
a Prior systemic treatment includes chemotherapy or immunotherapy. b Patients were stratified into response
groups based on RECIST 1.1. Clinical benefit was defined by patients who had partial response (PR) or stable
disease (SD) for ≥ 6 months. Patients with SD < 6 months or PD were classified as receiving no clinical benefit.
Abbreviations: LDH, lactate dehydrogenase; ULN, upper limit of normal; PR, partial response; SD, stable disease;
PD, progressive disease; SPOD, sum of the product of bi-dimensional diameters; PFS, progression-free survival;
PKCi, protein kinase C inhibitor (LXS196); HDM2i, HDM2 inhibitor (HDM201); ECOG PS, Eastern Cooperative
Oncology Group performance status.
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Figure 1. Relationship between uveal melanoma ctDNA (copies/mL), tumor burden and LDH. Spearman’s rank correlation
between ctDNA copies/mL and (A) LDH (U/L), p < 0.001, (B) SPOD (mm2), p < 0.01, (C) Longest liver lesion (mm), p =
0.11, (D) Liver SPOD (mm2), p = 0.06. Graph shows ctDNA+1 data.

3.3. Prognostic Value of Early during Treatment (EDT) ctDNA

Paired baseline and EDT ctDNA samples were available for 16 patients (patient #15
did not have an EDT sample). Four patients (4/16; 25%) displayed undetectable ctDNA at
EDT and three of these patients benefited from PKCi-based therapy (1 with PR and 2 with
SD ≥ 6 months; SD for 9.6 and 13.1 months, respectively) and the fourth patient initially
had SD but progressed at 3.7 months. Of these four patients, one (patient #5) had low
disease volume, undetectable ctDNA at baseline and EDT, SD ≥ 6 months and a PFS of
13.1 months. Of the remaining three patients, ctDNA zero converted at EDT from baseline
ctDNA levels ranging from 13–30 ctDNA copies/mL (Figure 2A). All four had a GNA11
Q209L mutation, a below median tumor burden and an LDH level below the upper limit
of normal.

Another nine patients (9/12; 75%) had positive ctDNA at baseline and showed a
substantial reduction but still detectable ctDNA at EDT (ctDNA reduction range 46–99%).
Three of these nine patients (33%) benefited from PKCi; patient #16 achieved PR with
delayed zero-conversion of ctDNA at day 57, patient #4 achieved SD ≥ 6 months and
showed undetectable ctDNA 41 days post treatment start and patient #1 achieved SD
≥ 6 without zero-conversion of ctDNA. Six patients with reduced, but not undetectable
ctDNA levels at EDT had no clinical benefit, with three patients showing SD < 6 months
(patients #11, #13 and #14) and three patients with PD (patients #6, #8 and #10) as best
response (Figure 2A, Table S1). The remaining three patients (patients #7, #12, #17) showed
an increase in ctDNA from baseline to EDT and all three of these patients did not benefit
from therapy (2 with SD < 6 months and 1 with, PD).
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Figure 2. Predictive performance of ctDNA. (A) ctDNA changes from baseline to EDT in clinical
benefit group (n = 6) and no clinical benefit group (n = 10) patients. Patient matched PRE-EDT
ctDNA levels were compared using Wilcoxon matched-pairs signed rank test, and unpaired PRE
or EDT ctDNA levels between clinical benefit and no clinical benefit patients were compared using
the Mann–Whitney test. (B) ROC curve analysis determined a negative predictive cut-off value (i.e.,
value providing maximum sensitivity and specificity) for ctDNA > 16.35 copies/mL at EDT for no
clinical benefit. ns, not significant; AUC, area under the curve.

EDT ctDNA levels were significantly lower in the clinical benefit patients compared to
the no clinical benefit subgroup (p = 0.023; Figure 2A). There was no statistical difference in
the baseline ctDNA level of the clinical benefit and no clinical benefit group. The changes
in baseline ctDNA to EDT ctDNA in both the clinical benefit group and no clinical benefit
group were also not statistically significant. The predictive accuracy of ctDNA was also
examined using receiver operator characteristic classification (ROC) curves. EDT ctDNA,
but not PRE ctDNA or change from PRE to EDT, accurately predicted clinical benefit to
PKCi based therapy (AUC 0.84, [95% confidence interval, 0.65–1.0, p = 0.026]) (Figure 2B).
Based on ROC curve analysis, the sensitivity and specificity for ctDNA > 16.35 copies/mL
at EDT in the no clinical benefit group were 70% and 100%, respectively. The positive and
negative predictive values for ctDNA > 16.35 copies/mL were 100% and 67%, respectively.

3.4. Longitudinal ctDNA Monitoring and Disease Progression

Monitoring ctDNA levels over time was also informative for establishing clinical
benefit and detecting disease progression. Collectively, six patients had undetectable
ctDNA during treatment (patient #2, #3, #4, #5, #9 and #16) and five of these patients
(5/6; 83%) benefited from PKCi-based therapy (PR or SD ≥ 6 months) (Figure 3A). Patient
#9 was the only patient with no clinical benefit who had an undetectable ctDNA at EDT
and multiple later time points (Figure 3B, Table S1). Conversely, of the seven patients
with consistently detectable ctDNA during therapy (patient #1, #7, #11, #13, #14, #15, #17)
(Figure 3, Figure S2) only one patient (patient #1, PFS of 7.4 months; Figure 3C) benefited
from therapy and this patient showed a 74% reduction in ctDNA level from baseline
to EDT.
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Figure 3. Monitoring of ctDNA in patients treated with PKCi in metastatic UM. ctDNA levels were collected longitudinally
during treatment and correlated to CT imaging during baseline, whilst on treatment and on progression. Longitudinal
ctDNA monitoring is shown for (A) clinical benefit patients, (B) no clinical benefit patients and (C) CT images and
corresponding ctDNA data are shown for clinical benefit patient #1. Only patients #2, #3, #4, #5, #9 and #16 had undetectable
ctDNA for the driver oncogene in at least one on-therapy plasma sample. SD, stable disease; PR, partial response; PD,
progressive disease.

Eight out of seventeen patients also had ctDNA samples assessed within 30 days
(before or after) of disease progression. In total, 7/8 patients (patient #1, #3 #7, #9, #11, #13
and #15; Figure 3, Figure S2) showed increasing ctDNA prior to radiological confirmation
of disease progression with an increase in size of target lesions and new metastases as per
RECIST 1.1 (Figure 4). Only patient #17 showed ctDNA levels near progression that were
lower than EDT ctDNA despite CT imaging confirming disease progression (Figure 3).

3.5. Detection of Driver and Additional Mutations through Ion Torrent NGS

We next examined the ctDNA of these patients using a targeted NGS panel that
included gene alterations shown to be prognostic in UM (Table 2). Paired baseline and
on-treatment samples (time from baseline to on-treatment sample 0.9–11.3 months) from 17
patients were sequenced and the driver GNAQ, GNA11 and CYSLTR2 mutations identified
in the tumor were confirmed by NGS in the baseline and/or on-treatment ctDNA samples
in 16/17 patients. The allele frequency of tumor-associated mutations determined by
ddPCR and NGS was highly correlated (Spearman’s rank r = 0.968, p < 0.001; Figure S3A).
The GNA11 Q209L driver mutation present in the UM of patient #9 was not detected in
the baseline or on-treatment liquid biopsy samples using NGS, and this patient had the
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lowest tumor burden (SPOD = 200 mm2), although not the lowest baseline ctDNA levels
by ddPCR (24 copies/mL plasma).

Table 2. Liquid biopsy mutation analysis using Ion Torrent next generation sequencing.

Patient ID Baseline Mutation
(MAF %, LOD %)

On-Treatment Mutation
(MAF %, LOD%)

Time from Baseline
to on-Treatment

Sample (Months)

1 GNA11Q209L → (0.7, 0.6)
GNA11Q209L → (23.4, 0.3)

TP53R248Q → (23.3, 0.3)
TP53R342 *→ (15.7, 0.3)

8.2

2 GNA11Q209L → (0.5, 0.3) GNA11Q209L → (9.9, 0.6) 8.5

3 GNA11Q209L → (3.0, 0.3)
SF3B1R625H → (1.3, 0.2)

GNA11Q209L → (2.0, 0.3)
SF3B1R625H → (1.8, 0.3)

10.0

4 GNAQR183H → (8.5, 0.2) GNAQR183H → (22.4, 0.2) 6.0

5 ND GNA11Q209L → (4.8, 0.6) 11.3

6 GNAQQ209P → (32.3, 0.2)
SF3B1R625C → (21.2, 0.1)

GNAQQ209P → (25.4, 0.2)
SF3B1R625C → (12.8, 0.2)

0.9

7 GNA11Q209L → (22.7, 0.1)
SF3B1R625L → (24.0, 0.1)

GNA11Q209L → (20.9, 0.2)
SF3B1R625L → (20.5, 0.2)

3.9

8 GNAQQ209P → (4.4, 0.1) GNAQQ209P → (0.3, 0.2) 1.0

9 ND ND 3.8

10 CYSLTR2L129Q → (8.1, 0.3) CYSLTR2L129Q → (0.5, 0.1) 0.9

11 GNA11Q209L → (13.3, 0.1) GNA11Q209L → (29.5, 0.2)
TP53G244D → (0.3, 0.2)

4.0

12
GNA11Q209L → (3.4, 0.3)

TP53Y220C → (0.7, 0.3)
TP53R248P → (0.3, 0.3)

GNA11Q209L → (14.1, 0.4) 0.9

13 GNAQQ209P → (0.8, 0.2) GNAQQ209P → (1.0, 0.2)
TP53R248G → (0.3, 0.2)

5.4

14 GNAQQ209P → (6.3, 0.2)
SF3B1R625H → (8.6, 0.2)

GNAQQ209P → (3.1, 0.4)
SF3B1R625H → (6.1, 0.3)

3.8

15 GNAQQ209P → (20.1, 0.2) GNAQQ209P → (9.7, 0.2) 3.8

16 GNAQQ209P → (5.9, 0.2) ND 2.4

17 GNAQR183Q → (4.2, 0.2) GNAQR183Q → (11.6, 0.3)
TP53S215G → (0.4, 0.3)

3.4

ND, not detected; MAF, mutant allele frequency; LOD, limit of detection. Timing of the on-treatment plasma
sample collection is also shown. *, indicates premature termination codon. All mutations shown had MAF > LOD.

In addition to the UM driver mutations, the hotspot SF3B1 R625 mutation was detected
in baseline and on-treatment ctDNA samples derived from four patients with GNAQ or
GNA11 driver mutations (patients #3, #6, #7 and #14; Table 2). The allele frequencies of
the SF3B1 and driver GNAQ/GNA11 mutations were highly correlated in these eight
ctDNA samples (Figure S3B). Of the four patients with SF3B1 mutations, one achieved SD
≥ 6 months, two had SD < 6 months and one patient had PD. The median PFS of these
SF3B1 mutation-positive patients was 4.6 months, slightly longer than the median PFS of
3.8 months for the whole cohort.
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Figure 4. Treatment response in target lesions and ctDNA detectability in UM patients treated with PKCi. Percentage
change in target lesions as per RECIST1.1 from 17 patients. Bars are aligned according to decreasing percentage in the
sum of target lesions. Positive bars show growth in target lesions and negative bars indicate shrinkage. The dotted line
corresponds to a 20% increase or 30% reduction in size of the target lesions. Patients were classified as ctDNA undetectable
if at least one on-therapy plasma sample was undetectable for the driver oncogene. Patient IDs are shown above or below
bars. # progression of disease with new non-target lesions.

We also identified TP53 mutations in the baseline and/or on-treatment plasma sam-
ples of 10 patients and many of these TP53 mutations are established cancer-associated
mutations (e.g., S215G, Y220C, G244D, G245S, R282P, R248P/Q/G) [25] (Table S2). Of these
10 patients, five received combination PKCi+HDM2i and there was an enrichment of TP53
mutations in the on-treatment plasma samples from patients treated with PKCi+HDM2i
compared to patients treated with PKCi monotherapy (Fisher exact test, p = 0.035). In-
terestingly, in four of five PKCi+HDM2i patients the TP53 variants were not identified
pre-treatment, suggesting the possibility of selection during treatment. It is important to
note that many TP53 mutations were detected at low allele frequencies that were below the
0.2% limit of detection of our NGS assay [24] and thus would require further validation.

4. Discussion

Currently, there is no effective systemic therapy for metastatic UM and recent clinical
trials with targeted therapies and immune checkpoint inhibitors appear not to improve the
OS of patients with metastatic UM [26,27]. Numerous phase 1 clinical trials are currently
underway including with PKCi-based therapy. In this study, we explored the utility of
ctDNA as an early marker of Phase I drug efficacy and resistance in metastatic UM [28].

We noted a strong correlation between baseline UM ctDNA levels and prognostic
markers including tumor burden and LDH levels, and this is consistent with previous
reports showing that elevated ctDNA reflects higher disease burden and is associated with
poor prognosis in UM and CM [20,21]. It is well established that ctDNA is also associated
with response, PFS and OS in metastatic CM patients treated with targeted therapies and
anti-PD1-based immunotherapies [19,20]. In this study, we explored the utility of ctDNA
in monitoring and predicting UM response to PKCi-based therapy. Only one other study
has examined longitudinal UM ctDNA levels and treatment response. The latter was a
proof-of-concept study including only three UM patients, and although it confirmed that
EDT ctDNA was predictive of an anti-PD-1 inhibitor response in a cohort that included
various cancer types [29], the UM patients failed to respond to PD-1 inhibitor blockade and
ctDNA was only detected in two of the UM patients [29].

In this study, we show that ctDNA levels early during therapy can predict UM re-
sponses to PKCi-based targeted therapy. Interestingly, pre-treatment ctDNA did not predict
response or prolonged PFS in our UM patient cohort, even though baseline ctDNA was
positively correlated with disease burden and LDH. Importantly, although all responding
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patients with detectable baseline ctDNA showed reduced levels of ctDNA at EDT, the
decrease from PRE to EDT was not significant, and ctDNA at EDT was also reduced in
seven of 10 patients showing no clinical benefit to PKCi. Thus, it is the absolute level of
EDT ctDNA that is indicative of treatment response in this cohort and we reported similar
findings in advanced melanoma patients treated with anti-PD1-based therapy [20]. Consid-
ering the level of ctDNA is reflective of both tumor size and metabolic tumor burden [30],
it is not surprising that low ctDNA early during therapy would predict treatment response.
Our study also confirms that increasing UM ctDNA preceded radiological progression and
did so with lead-time ranging from 4 to 10 weeks. A previous study also reported that
increasing ctDNA also precedes radiologic detection of UM liver metastases [22]. Thus,
the inclusion of ctDNA analysis in Phase I UM trials can provide meaningful data on
patients failing to respond to novel therapies, and this may accelerate CT-based confir-
mation of progression or contribute to adaptive trial design, allowing for earlier access to
alternate drugs.

We also utilized a custom targeted NGS panel designed for the detection of 90% of
known CM gene mutations and 95% of known UM gene mutations [24]. We confirmed
that the allele frequency of driver mutations identified using targeted Ion Torrent NGS was
comparable to the mutant allele frequencies determined by ddPCR, although the sensitivity
of NGS did not match ddPCR, and the driver GNAQ mutation was not detected by NGS
in one patient, presumably due to the low volume of disease. Nevertheless, NGS was
able to identify additional mutated genes (i.e., SF3B1, TP53), which have been implicated
in UM prognosis and treatment response. For instance, TP53 mutations were detected
in the circulation of 5/6 UM patients treated with PKCi+HDM2i. These TP53 mutations
may have been selected or expanded in response to therapy as they were not detected at
baseline in four patients. As these mutations were detected at low frequency they may
represent clonal expansion of tumor cells or hematopoietic stem cells during the process
of clonal hematopoiesis. Considering that TP53 loss confers HDM2i resistance [31] and
that the TP53 mutations detected in this study are established loss-of-function alterations,
ctDNA may prove valuable in the early detection of treatment resistance mechanisms. It is
also worth noting that a recent study confirmed that TP53 is significantly disrupted in UM
with 11/103 UM showing genomic loss or mutations affecting the TP53 gene [14].

This study was limited by the small sample size and the fact that patients were
treated with two distinct treatments based on PKC inhibition. A larger patient sample in a
prospective study is required to evaluate the predictive value of baseline ctDNA level and
more importantly test the value of including ctDNA as a routine monitoring tool in UM
clinical trials.

5. Conclusions

In summary, baseline ctDNA in metastatic UM strongly correlates with baseline LDH
level and disease volume. Treatment-induced changes in ctDNA and low levels of ctDNA
EDT predicted response to PKCi-based targeted therapy and the inclusion of targeted NGS
yielded valuable and accurate data about driver mutation frequency and the selection of
potential resistance effectors.

Despite proof of concept that ctDNA is a useful biomarker for monitoring response to
therapy, in the form of evolution of resistance, and should be included in metastatic UM
clinical trials, the most important challenge remains the identification of effective, durable
therapies for UM.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13071740/s1, Figure S1: Relationship between PKC inhibitor-based response and
ctDNA levels, LDH and disease burden, Figure S2: Longitudinal monitoring of ctDNA in patients
treated with PKCi in metastatic UM, Figure S3: Significant correlation in mutant allele frequency
determined by ddPCR and targeted Ion Torrent NGS, Table S1: Patient and response to therapy
details, Table S2: TP53 mutations detected by Ion Torrent next generation sequencing.
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