18 research outputs found
Carbon sequestration in the deep Atlantic enhanced by Saharan dust
sinking rates of particulate organicmatter. Here we present a two-year time series of sediment trap observations of particulate organic carbon flux to 3,000m depth, measured directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion of primary production is exported to depth in the dust-rich North Atlantic gyre. Low stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of nitrogen fixation and productivity following the deposition of dust-borne nutrients. Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing Trichodesmium species. Whereas ballast in Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can enhance primary productivity, and mineral particles act as ballast, increasing the southern gyre is predominantly biogenic, dust-derived mineral particles constitute the dominant ballast element during the enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases carbon sequestration in the North Atlantic gyre through the fertilization of the nitrogen-fixing community in surface waters and mineral ballasting of sinking particles
Distinct microplastic patterns in the sediment and biota of an urban stream.
Urban freshwaters, their sediments and resident biota are often highly susceptible to microplastic contamination from catchment-specific sources. Water velocity and spatiotemporal dynamics within the system can impact microplastic loads, while biological features may additionally impact levels within freshwater biota. Here, we investigated the spatiotemporal variations in microplastic loads collected from sediment, macroinvertebrate and fish samples from an urban watercourse (Bourne Stream) in Dorset, southwest England. Sediment particles were mostly fragments of colours (especially orange and purple) whereas microplastics in both macroinvertebrates and fishes were blue/green and fibres. Across all sample types, the dominant particle size class was ≤100 μm. Median (M) and range (R) of microplastic loads within each sample type were sediment: M = 0.06, R = 0-0.36 particles g-1; macroinvertebrates: M = 0, R = 0-4 particles per batch; and fishes: M = 1, R = 0-6 particles per individual. Sediment loads varied spatially, with the highest load in the most upstream site, whereas biotic loads did not vary across space and time. Macroinvertebrate batch loadings varied between taxa and feeding guild, with counts significantly higher in annelids but lower in herbivores. Fish counts were higher in species with true, differentiated stomachs, but with the effects of species, feeding guild and body size being non-significant. Within sites, mean microplastic loads did not correlate between sediment, macroinvertebrate and fish samples. These results suggest that sediment freshwater microplastic loadings may vary spatially but that these trends are not reflected by, or correlated to, those in the biota where ingestion varies with biological traits. Assessments of freshwater microplastic contamination must therefore consider sampling spatiotemporally and across different biotic communities to fully understand the scale of contamination, and to subsequently undertake effective mitigation steps
Low microplastic loads in riverine European eel (Anguilla anguilla) from SW England during their marine-freshwater transition.
The microplastic loads in elvers of the critically endangered European eel Anguilla anguilla, sampled in the lower reaches of three English rivers, were very low (incidence: 3.3 %, mean ± SD: 0.03 ± 0.18 particles) and did not vary with body length or between rivers. Particles were mostly black, polyolefins, fibres and fragments of size 101-200 μm. Current levels indicate a low contamination pressure locally and, consequently, management efforts might prioritise mitigating the effects of other stressors affecting the species. This article is protected by copyright. All rights reserved
Vertical imbalance in organic carbon budgets is indicative of a missing vertical transfer during a phytoplankton bloom near South Georgia (COMICS)
The biological carbon pump, driven principally by the surface production of sinking organic matter and its subsequent remineralization to carbon dioxide (CO2) in the deep ocean, maintains atmospheric CO2 concentrations around 200 ppm lower than they would be if the ocean were abiotic. One important driver of the magnitude of this effect is the depth to which organic matter sinks before it is remineralised, a parameter we have limited confidence in measuring given the difficulty involved in balancing sources and sinks in the ocean's interior. One solution to this imbalance might be a temporal offset in which organic carbon accumulates in the mesopelagic zone (100–1000 m depth) early in the productive season before it is consumed later. Here, we develop a novel accounting method to address non-steady state conditions by estimating fluxes of particulate organic matter into, and accumulation within, distinct vertical layers in the mesopelagic zone using high-resolution spatiotemporal vertical profiles. We apply this approach to a time series of measurements made during the declining phase of a large diatom bloom in a low-circulation region of the Southern Ocean downstream of South Georgia. Our data show that the major export event led to a significant accumulation of organic matter in the upper mesopelagic zone (100–200 m depth) which declined over the following weeks, implying that temporal offsets need to be considered when compiling budgets. However, even when accounting for this accumulation, a mismatch in the vertically resolved organic carbon budget remained, implying that there are likely widespread processes that we do not yet understand that redistribute material vertically within the mesopelagic zone
Vertical imbalance in organic carbon budgets is indicative of a missing vertical transfer during a phytoplankton bloom near South Georgia (COMICS)
The biological carbon pump, driven principally by surface production and sinking of organic matter to deep water and its subsequent remineralization to CO2 maintains atmospheric CO2 around 200 ppm lower than it would be if the ocean were abiotic. One important driver of the magnitude of this effect is the depth to which organic matter sinks before it is remineralised, a parameter we have limited confidence in measuring given the difficulty involved in balancing sources and sinks in the ocean's interior. This imbalance is due, in part, to our inability to measure respiration directly and our reliance on radiotracer-based proxies. One solution to these problems might be a temporal offset in which organic carbon accumulates in the mesopelagic zone (100–1000 m depth) early in the productive season prior to it being consumed later, a situation which could lead to a net apparent sink occurring if a steady state assumption is applied as is often the approach. In this work, we develop a novel accounting method to address this issue, independent of respiration measurements, by estimating fluxes into and accumulation within distinct vertical layers in the mesopelagic. We apply this approach to a time series of measurements of particle sinking velocities and interior organic carbon concentrations made during the declining phase of a large diatom bloom in a low-circulation region of the Southern Ocean downstream of South Georgia. Our data show that the major export event led to a significant accumulation of organic matter in the upper mesopelagic (100–200 m depth) which declined over several weeks, implying that temporal offsets need to be considered when compiling budgets. However, even when accounting for this accumulation, a mismatch in the vertically resolved organic carbon budget remained, implying that there are likely widespread processes that we do not yet understand that redistribute material vertically in the mesopelagic
Vertical imbalance in organic carbon budgets is indicative of a missing vertical transfer during a phytoplankton bloom near South Georgia (COMICS)
The biological carbon pump, driven principally by the surface production of sinking organic matter and its subsequent remineralization to carbon dioxide (CO2) in the deep ocean, maintains atmospheric CO2 concentrations around 200 ppm lower than they would be if the ocean were abiotic. One important driver of the magnitude of this effect is the depth to which organic matter sinks before it is remineralised, a parameter we have limited confidence in measuring given the difficulty involved in balancing sources and sinks in the ocean's interior. One solution to this imbalance might be a temporal offset in which organic carbon accumulates in the mesopelagic zone (100–1000 m depth) early in the productive season before it is consumed later. Here, we develop a novel accounting method to address non-steady state conditions by estimating fluxes of particulate organic matter into, and accumulation within, distinct vertical layers in the mesopelagic zone using high-resolution spatiotemporal vertical profiles. We apply this approach to a time series of measurements made during the declining phase of a large diatom bloom in a low-circulation region of the Southern Ocean downstream of South Georgia. Our data show that the major export event led to a significant accumulation of organic matter in the upper mesopelagic zone (100–200 m depth) which declined over the following weeks, implying that temporal offsets need to be considered when compiling budgets. However, even when accounting for this accumulation, a mismatch in the vertically resolved organic carbon budget remained, implying that there are likely widespread processes that we do not yet understand that redistribute material vertically within the mesopelagic zone
Are litter, plastic and microplastic quantities increasing in the ocean?
Whilst both plastic production and inputs at sea have increased since the 1950s, several modelling studies predict a
further increase in the coming years in these respective quantities. We compiled scientific literature on trends in
marine litter, consisting largely of plastic and microplastics in the ocean, understanding that monitoring programs
or assessments for these aspects are varied, frequently focusing on limited components of the marine environment
in different locations, and covering a wide spectrum of marine litter types, with limited standardization. Here we
discuss how trends in the amounts of litter in the marine environment can be compared with the information
provided by models. Increasing amounts of plastic are found in some regions, especially in remote areas, but many
repeated surveys and monitoring efforts have failed to demonstrate any consistent real temporal trend. An
observed steady state situation of plastic quantities in many marine compartments and the fate and transport of
plastic in the marine environment remain areas for much needed further research.info:eu-repo/semantics/publishedVersio
Resupply of mesopelagic dissolved iron controlled by particulate iron composition
The dissolved iron supply controls half of the oceans’ primary productivity. Resupply by the remineralization of sinking particles, and subsequent vertical mixing, largely sustains this productivity. However, our understanding of the drivers of dissolved iron resupply, and their influence on its vertical distribution across the oceans, is still limited due to sparse observations. There is a lack of empirical evidence as to what controls the subsurface iron remineralization due to difficulties in studying mesopelagic biogeochemistry. Here we present estimates of particulate transformations to dissolved iron, concurrent oxygen consumption and iron-binding ligand replenishment based on in situ mesopelagic experiments. Dissolved iron regeneration efficiencies (that is, replenishment over oxygen consumption) were 10- to 100-fold higher in low-dust subantarctic waters relative to higher-dust Mediterranean sites. Regeneration efficiencies are heavily influenced by particle composition. Their make-up dictates ligand release, controls scavenging, modulates ballasting and may lead to the differential remineralization of biogenic versus lithogenic iron. At high-dust sites, these processes together increase the iron remineralization length scale. Modelling reveals that in oceanic regions near deserts, enhanced lithogenic fluxes deepen the ferricline, which alter the vertical patterns of dissolved iron replenishment, and set its redistribution at the global scale. Such wide-ranging regeneration efficiencies drive different vertical patterns in dissolved iron replenishment across oceanic provinces
Carbon sequestration in the deep Atlantic enhanced by Saharan dust
Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can enhance primary productivity, and mineral particles act as ballast, increasing sinking rates of particulate organic matter. Here we present a two-year time series of sediment trap observations of particulate organic carbon flux to 3,000 m depth, measured directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion of primary production is exported to depth in the dust-rich North Atlantic gyre. Low stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of nitrogen fixation and productivity following the deposition of dust-borne nutrients. Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing Trichodesmium species. Whereas ballast in the southern gyre is predominantly biogenic, dust-derived mineral particles constitute the dominant ballast element during the enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases carbon sequestration in the North Atlantic gyre through the fertilization of the nitrogen-fixing community in surface waters and mineral ballasting of sinking particles