236 research outputs found

    Kinetic barriers in RNA unzipping

    Full text link
    We consider a simple model for the unfolding of RNA tertiary structure under dynamic loading. The opening of such a structure is regarded as a two step process, each corresponding to the overcoming of a single energy barrier. The resulting two-barrier energy landscape accounts for the dependence of the unfolding kinetics on the pulling rate. Furthermore at intermediate force, the two barriers cannot be distinguished by the analysis of the opening kinetic, which turns out to be dominated by a single macro-barrier, whose properties depend non-trivially on the two single barriers. Our results suggest that in pulling experiments on RNA molecule containing tertiary structures, the details of the single kinetic barriers can only be obtained using a low pulling rate value, or in the high force regime.Comment: to appear on Eur. Phys. J.

    Mechanical unfolding of RNA hairpins

    Full text link
    Mechanical unfolding trajectories, generated by applying constant force in optical tweezer experiments, show that RNA hairpins and the P5abc subdomain of the group I intron unfold reversibly. We use coarse-grained Go-like models for RNA hairpins to explore forced-unfolding over a broad range of temperatures. A number of predictions that are amenable to experimental tests are made. At the critical force the hairpin jumps between folded and unfolded conformations without populating any discernible intermediates. The phase diagram in the force-temperature (f,T) plane shows that the hairpin unfolds by an all-or-none process. The cooperativity of the unfolding transition increases dramatically at low temperatures. Free energy of stability, obtained from time averages of mechanical unfolding trajectories, coincide with ensemble averages which establishes ergodicity. The hopping time between the the native basin of attraction (NBA) and the unfolded basin increases dramatically along the phase boundary. Thermal unfolding is stochastic whereas mechanical unfolding occurs in "quantized steps" with great variations in the step lengths. Refolding times, upon force quench, from stretched states to the NBA is "at least an order of magnitude" greater than folding times by temperature quench. Upon force quench from stretched states the NBA is reached in at least three stages. In the initial stages the mean end-to-end distance decreases nearly continuously and only in the last stage there is a sudden transition to the NBA. Because of the generality of the results we propose that similar behavior should be observed in force quench refolding of proteins.Comment: 23 pages, 6 Figures. in press (Proc. Natl. Acad. Sci.

    Graffiti, postgraffiti y reconfiguración urbana: usos sociales de las gráficas públicas en el mercado popular de San Roque y en el barrio La Floresta

    Get PDF
    El creciente protagonismo de las expresiones gráficas públicas del postgraffiti y el graffiti en la transformación de las ciudades, en el marco del actual reordenamiento urbano, viene acompañado de la paulatina institucionalización, profesionalización y regulación de estas prácticas. Esta investigación desarrolla un análisis comparativo de los usos sociales múltiples que adquirieron las piezas de postgraffiti y graffiti en tres festivales de gráfica pública, realizados en dos espacios sociales de la ciudad andina de Quito (el barrio La Floresta y el Mercado de San Roque), durante el periodo 2014-2019. La importancia de analizar la gráfica pública en estos dos espacios sociales radica en que se puede rastrear los distintos matices que adquirieron los usos de la gráfica a través de la diferencia en la trama de condiciones espaciales, económicas, políticas y socioculturales, así como, en las necesidades o intereses de quienes propiciaron la producción de las gráficas y de quienes se apropiaron de las mismas

    Forced-unfolding and force-quench refolding of RNA hairpins

    Get PDF
    Using coarse-grained model we have explored forced-unfolding of RNA hairpin as a function of fSf_S and the loading rate (rfr_f). The simulations and theoretical analysis have been done without and with the handles that are explicitly modeled by semiflexible polymer chains. The mechanisms and time scales for denaturation by temperature jump and mechanical unfolding are vastly different. The directed perturbation of the native state by fSf_S results in a sequential unfolding of the hairpin starting from their ends whereas thermal denaturation occurs stochastically. From the dependence of the unfolding rates on rfr_f and fSf_S we show that the position of the unfolding transition state (TS) is not a constant but moves dramatically as either rfr_f or fSf_S is changed. The TS movements are interpreted by adopting the Hammond postulate for forced-unfolding. Forced-unfolding simulations of RNA, with handles attached to the two ends, show that the value of the unfolding force increases (especially at high pulling speeds) as the length of the handles increases. The pathways for refolding of RNA from stretched initial conformation, upon quenching fSf_S to the quench force fQf_Q, are highly heterogeneous. The refolding times, upon force quench, are at least an order of magnitude greater than those obtained by temperature quench. The long fQf_Q-dependent refolding times starting from fully stretched states are analyzed using a model that accounts for the microscopic steps in the rate limiting step which involves the trans to gauche transitions of the dihedral angles in the GAAA tetraloop. The simulations with explicit molecular model for the handles show that the dynamics of force-quench refolding is strongly dependent on the interplay of their contour length and the persistence length, and the RNA persistence length.Comment: 42 pages, 15 figures, Biophys. J. (in press

    Weak temporal signals can synchronize and accelerate the transition dynamics of biopolymers under tension

    Full text link
    In addition to thermal noise, which is essential to promote conformational transitions in biopolymers, cellular environment is replete with a spectrum of athermal fluctuations that are produced from a plethora of active processes. To understand the effect of athermal noise on biological processes, we studied how a small oscillatory force affects the thermally induced folding and unfolding transition of an RNA hairpin, whose response to constant tension had been investigated extensively in both theory and experiments. Strikingly, our molecular simulations performed under overdamped condition show that even at a high (low) tension that renders the hairpin (un)folding improbable, a weak external oscillatory force at a certain frequency can synchronously enhance the transition dynamics of RNA hairpin and increase the mean transition rate. Furthermore, the RNA dynamics can still discriminate a signal with resonance frequency even when the signal is mixed among other signals with nonresonant frequencies. In fact, our computational demonstration of thermally induced resonance in RNA hairpin dynamics is a direct realization of the phenomena called stochastic resonance (SR) and resonant activation (RA). Our study, amenable to experimental tests using optical tweezers, is of great significance to the folding of biopolymers in vivo that are subject to the broad spectrum of cellular noises.Comment: 22 pages, 7 figure

    Improving signal-to-noise resolution in single molecule experiments using molecular constructs with short handles

    Get PDF
    We investigate unfolding/folding force kinetics in DNA hairpins exhibiting two and three states with newly designed short dsDNA handles (29 bp) using optical tweezers. We show how the higher stiffness of the molecular setup moderately enhances the signal-to-noise ratio (SNR) in hopping experiments as compared to conventional long handles constructs (approximately 700 bp). The shorter construct results in a signal of higher SNR and slower folding/unfolding kinetics, thereby facilitating the detection of otherwise fast structural transitions. A novel analysis of the elastic properties of the molecular setup, based on high-bandwidth measurements of force fluctuations along the folded branch, reveals that the highest SNR that can be achieved with short handles is potentially limited by the marked reduction of the effective persistence length and stretch modulus of the short linker complex.Comment: Main paper: 20 pages and 6 figures. Supplementary Material: 25 page

    Probing complex RNA structures by mechanical force

    Full text link
    RNA secondary structures of increasing complexity are probed combining single molecule stretching experiments and stochastic unfolding/refolding simulations. We find that force-induced unfolding pathways cannot usually be interpretated by solely invoking successive openings of native helices. Indeed, typical force-extension responses of complex RNA molecules are largely shaped by stretching-induced, long-lived intermediates including non-native helices. This is first shown for a set of generic structural motifs found in larger RNA structures, and then for Escherichia coli's 1540-base long 16S ribosomal RNA, which exhibits a surprisingly well-structured and reproducible unfolding pathway under mechanical stretching. Using out-of-equilibrium stochastic simulations, we demonstrate that these experimental results reflect the slow relaxation of RNA structural rearrangements. Hence, micromanipulations of single RNA molecules probe both their native structures and long-lived intermediates, so-called "kinetic traps", thereby capturing -at the single molecular level- the hallmark of RNA folding/unfolding dynamics.Comment: 9 pages, 9 figure

    Mechanical unfolding of RNA: From hairpins to structures with internal multiloops

    Get PDF
    Mechanical unfolding of RNA structures, ranging from hairpins to ribozymes, using laser optical tweezer (LOT) experiments have begun to reveal the features of the energy landscape that cannot be easily explored using conventional experiments. Upon application of constant force (ff), RNA hairpins undergo cooperative transitions from folded to unfolded states whereas subdomains of ribozymes unravel one at a time. Here, we use a self-organized polymer (SOP) model and Brownian dynamics simulations to probe mechanical unfolding at constant force and constant-loading rate of four RNA structures of varying complexity. Our work shows (i) the response of RNA to force is largely determined by the native structure; (ii) only by probing mechanical unfolding over a wide range of forces can the underlying energy landscape be fully explored.Comment: 26 pages, 6 figures, Biophys. J. (in press

    Single molecule experiments in biophysics: exploring the thermal behavior of nonequilibrium small systems

    Full text link
    Biomolecules carry out very specialized tasks inside the cell where energies involved are few tens of k_BT, small enough for thermal fluctuations to be relevant in many biomolecular processes. In this paper I discuss a few concepts and present some experimental results that show how the study of fluctuation theorems applied to biomolecules contributes to our understanding of the nonequilibrium thermal behavior of small systems.Comment: Proceedings of the 22nd Statphys Conference 2004 (Bangalore,India). Invited contributio
    corecore