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ABSTRACT Mechanical unfolding of RNA structures, ranging from hairpins to ribozymes, using laser optical tweezer
experiments have begun to reveal the features of the energy landscape that cannot be easily explored using conventional
experiments. Upon application of constant force (f), RNA hairpins undergo cooperative transitions from folded to unfolded states
whereas subdomains of ribozymes unravel one at a time. Here, we use a self-organized polymer model and Brownian dynamics
simulations to probe mechanical unfolding at constant force and constant-loading rate of four RNA structures of varying com-
plexity. For simple hairpins, such as P5GA, application of constant force or constant loading rate results in bistable cooperative
transitions between folded and unfolded states without populating any intermediates. The transition state location (DxTS

F )
changes dramatically as the loading rate is varied. At loading rates comparable to those used in laser optical tweezer experi-
ments, the hairpin is plastic, with DxTS

F being midway between folded and unfolded states; whereas at high loading rates, DxTS
F

moves close to the folded state, i.e., RNA is brittle. For the 29-nucleotide TAR RNA with the three-nucleotide bulge, unfolding
occurs in a nearly two-state manner with an occasional pause in a high free energy metastable state. Forced unfolding of the 55
nucleotides of the Hepatitis IRES domain IIa, which has a distorted L-shaped structure, results in well-populated stable inter-
mediates. The most stable force-stabilized intermediate represents straightening of the L-shaped structure. For these
structures, the unfolding pathways can be predicted using the contact map of the native structures. Unfolding of a RNA motif
with internal multiloop, namely, the 109-nucleotide prohead RNA that is part of the f29 DNA packaging motor, at constant value
of rf occurs with three distinct rips that represent unraveling of the paired helices. The rips represent kinetic barriers to unfolding.
Our work shows 1), the response of RNA to force is largely determined by the native structure; and 2), only by probing
mechanical unfolding over a wide range of forces can the underlying energy landscape be fully explored.

INTRODUCTION

The discovery of self-splicing catalytic activity of ciliate

Tetrahymena thermophila ribozyme (1,2) and subsequent

findings that RNA molecules play an active role as enzymes

(3) in many cellular processes have revolutionized RNA re-

search. Just as for protein folding, the structures and func-

tions of RNA enzymes (ribozymes) are linked. As a result,

the RNA folding problem—namely, how a nucleotide se-

quence folds to the native state conformation—is important

in molecular biology. Several studies from a number of groups

(4–9) have shown that, under in vitro conditions, ribozymes

have rugged energy landscapes. Despite significant advances

in our understanding of how ribozymes fold, several out-

standing issues remain, which can be addressed using single

molecule experiments (4–10).

Thermodynamic and kinetic measurements in ensemble and

single-molecule florescent energy transfer experiments are

typically made by varying the concentration of counterions.

Recently, using the laser optical tweezer (LOT) setup,

mechanical force has been used to trigger folding and un-

folding of RNA molecules at a single-molecule level (11,12).

Mechanical force, applied to a specific position of the mole-

cule, induces sequence- and structure-dependent response,

which is reflected in the force-extension curve (FEC) that is

usually fit using the worm-like model (13,14). The stability of

RNAs is inferred by integrating the FECs. For simple motifs,

such as hairpins, it has been shown that the stability of the

native structures can be accurately measured using mechanical

unfolding trajectories that exhibit multiple transitions between

the foldedand the unfolded statewhen the force is held constant

(11). Similarly, thermodynamics of ribozymes can also be

obtained using the nonequilibrium work theorem (15,16).

Mechanical force has also been used to probe unfolding and

refolding kinetics of RNA. The cooperative reversible folding

of hairpins has been shown by monitoring the end-to-end

distance (R), a variable conjugate to the mechanical f, as a
function of time. This procedure works best when RNA fold-

ing is described using two-state approximation. For multido-

main ribozymes, the folding/unfolding kinetics is complex

and new tools are required to interpret the kinetic data. In a

pioneering study,Onoa et al. (12) showed that the rips in FECs

for the L-21 derivative ofTetrahymena thermophila ribozyme

(T. ribozyme), composed of multiple domains, are a result of

unfolding of individual intact domains that are stabilized in

the native state by counterion-dependent tertiary interactions.

The single molecule studies show that the response to

mechanical force is a powerful tool to analyze the underlying

principles of RNA self-assembly. The extraction of unfolding

pathway using FECs alone is not easy, especially when the

Submitted July 10, 2006, and accepted for publication September 19, 2006.

Address reprint requests to D. Thirumalai, Tel.: 301-405-4803; E-mail:

thirum@glue.umd.edu; or to Changbong Hyeon, Tel.: 858-534-7354;

E-mail: hyeoncb@glue.umd.edu.

� 2007 by the Biophysical Society

0006-3495/07/02/731/13 $2.00 doi: 10.1529/biophysj.106.093062

Biophysical Journal Volume 92 February 2007 731–743 731

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82353841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ribozyme is composed of multiple domains (12). To decipher

the unfolding pathways of T. ribozyme, Onoa et al. (12) did a

series of experiments in which FECs of different indepen-

dently folding subdomains were used to interpret the order of

unfolding of the substructures. In RNA, there is a clear sepa-

ration in the free energies associated with secondary and ter-

tiary interactions. Thus, the FEC for a multidomain ribozyme

is, to a first approximation, the union of the FECs for the

individual domains. Such a strategy can be used to assign a rip

of FEC to the unfolding of a particular subdomain as long as

the contour lengths of two different unfolded motifs are not

similar. Moreover, it is known that the precise response of

RNA to force depends not only on the sequence and the native

structure but also on how the force is applied (17,18). Single-

molecule experiments can be performed in different modes

that includes either force-clamp (f is in constant) (11,19) or

force-ramp (f varies in a time-dependent manner) (18,20).

Theoretical studies have proposed models for obtaining a

number of experimentally measurable quantities including

FECs for RNA (21–23). Computational studies have shown,

using RNA hairpin as an example, that the kinetics of unfold-

ing and force-quench refolding as well the nature of unfolding

depend on the magnitude of f and the loading rate (rf) (17,24).
These studies show that it is important to complement the

single-molecule studies with computations that can reliably

resolve key issues that are difficult to address in experiments.

In this article, we probe the forced-unfolding dynamics of

RNA molecules using a simple model. Because these simu-

lations can be used to directly monitor structures in the

transition from folded to the fully stretched states, unfolding

pathways can be unambiguously resolved. We introduce the

self-organized polymer (SOP) model for RNA that is based

only on the self-avoiding nature of the RNA and the native

structure. We apply the SOP model to probe forced-unfolding

of a number of RNA structures of varying complexity. Many

of the subtle features of the variations in the mechanical

unfolding as a function of f and rf can be illustrated using

P5GA, a simple RNA. For example, we show that the dra-

matic movements in the location of the unfolding transition

state occur as rf (or f) is varied. Applications to structures of

increasing complexity (TAR RNA, prohead RNA from do-

main IIa of the Hepatitis C virus, f29 DNA bacteriophage

motor) show that discrete intermediates can be populated in

force-ramp and force-clamp simulations over a certain range

of forces. Our results show that the response of RNA to force

is largely dependent on the architecture of the native state.

More importantly, we have established that the characteri-

zation of the energy landscape requires using force values (or

loading rates) over a wide range.

METHODS

Model

Our goal is to construct a model for obtaining mechanical folding and

unfolding trajectories for simple RNA hairpins to large ribozymes. The

model has to be realistic enough to take into account the interactions that

stabilize the native fold, yet simple enough that the response to a wide range

of forces and loading rates can be explored. To this end, we introduce a new

class of versatile coarse-grained self-organized polymer (SOP) model that is

particularly well suited for single-molecule force spectroscopy applications

of large ribozymes and proteins. The SOP model can be used to probe the

response of mechanical force that is applied by means of force-clamp

(constant force), force-ramp, and force-quench. The reasons for using SOP

model in force spectroscopy applications are the following.

1. Forced-unfolding and force-quench refolding lead to large conforma-

tional changes. For example, upon application of constant force, the

end-to-end distance of the RNA changes by ;(10–100) nm, depending

on the size of RNA. Currently, single molecule experiments (laser op-

tical tweezer or atomic force microscopy) cannot resolve structural changes

below a few nm. As a result, details of the rupture of hydrogen bonds or

local tertiary contacts between specific bases cannot be discerned from

FEC or the dynamics of R alone. Because only large changes in R (the

variable that is conjugate to force) are monitored, it is not crucial to

include details of the local interactions such as bond-angle and various

dihedral angle potentials.

2. We had shown, in the context of mechanical unfolding of proteins, that

many of the details of unfolding pathways can be accurately computed

by taking into account interactions that stabilize the native fold (25).

Based on this observation, accurate predictions of unfolding forces and

the location of the unfolding transition states were made for a number of

proteins with b-sandwich, a/b, and a-helical folds. Our previous study

(25) also suggested that it is crucial to take into account chain connec-

tivity and attractive interactions that faithfully reproduce the contact

map of a fold.

3. Electrostatic interactions are pivotal in RNA. However, under physi-

ological condition, counterion concentration is large enough to effec-

tively screen the electrostatic repulsion between the phosphate groups.

Thus, due to effective screening (small Debye length), the repulsive elec-

trostatic potential between phosphate groups is effectively short-ranged.

With the above observations in mind, we propose the SOP model for

RNA that retains chain connectivity and favorable attractive interactions

between sites that stabilize the native fold. Each interaction center represents

the center of mass of a nucleotide. In terms of the coordinates fri, i ¼ 1, 2,

. . .Ng of RNA with N nucleotide, the total potential energy in the SOP

representation is
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The first term is for the chain connectivity. The finite extensible nonlinear

elastic potential (26) is used with k ¼ 20 kcal/(mol3 Å2), R0 ¼ 0.2 nm, and

ri, i11 is the distance between neighboring beads interaction centers i and i1 1,

roi; i11 is the distance in the native structure. The use of finite extensible non-

linear elastic potential is more advantageous than the standard harmonic

potential, especially when considering forced-stretching because the fluc-

tuations of ri, i11 are strictly restricted around roi; i11 with variation of 6R0.

The Lennard-Jones potential is used to account for interactions that stabilize

the native topology. Native contact is defined for the pair of interaction

centers whose distance is,RC# 1.4 nm in the native state for ji� jj. 2. If i

and j sites are in contact in the native state, Dij ¼ 1, otherwise Dij ¼ 0. We

used eh ¼ 0.7 kcal/mol for the native pairs, el ¼ 1 kcal/mol for nonnative

732 Hyeon and Thirumalai

Biophysical Journal 92(3) 731–743



pairs. In the current version, we have neglected nonnative attractions that

will not qualitatively affect the results because, under tension, such inter-

actions are greatly destabilized. To ensure the noncrossing of the chain, we

set s ¼ 7 Å. Only for i, i 1 2 pairs we set s* ¼ 3.5 Å to prevent the

flattening of the helical structures when the overall repulsion is large. There

are five parameters in the SOP force field (k, R0, eh, el, and Rc) (27). Of these,

the results are sensitive to the precise values of eh/el and Rc. We have

discovered that the quantitative results are insensitive to Rc as long as it is in

the physical range that is determined by the RNA contact maps. In principle,

the ratio eh/el can be adjusted to obtain realistic values of forces. For sim-

plicity, we choose a uniform value of eh for all RNA constructs. Surpris-

ingly, the SOP force field, with the same set of parameters, can be used

to obtain near-quantitative results for RNA molecules of varying native

topology.

The time spent to calculate Lennard-Jones forces scales as OðN2Þ. Dras-
tic savings in computational time can be achieved by truncating the forces

due to the Lennard-Jones potential for interaction pairs with rij. (3roij or 3s)

to zero. We refer to the model as the self-organized polymer (SOP) model

because it only uses the polymeric nature of the biomolecules with the

crucial topological constraints that arise by the specific fold. For probing

forced-unfolding of RNA (or proteins) it is sufficient to include attractive

interactions only between contacts that stabilize the native state (see Eq. 1).

We believe none of the results will change qualitatively if this restriction is

relaxed, i.e., if nonnative interactions are also taken into account.

Simulations

Using the SOP model, we simulated the mechanical unfolding and refolding

of various RNA structures from a simple hairpin to a large ribozyme (N �
400). To simulate force-ramp experiments, we pull a harmonic spring (ks ¼
28 pN/nm), which is attached to the 39 end of molecule at a constant speed

(v). The time(t)-dependent force acting on the 39 end is f ¼ �ks(z – vt),

where z is zth coordinate of the 39 end. In force-clamp simulations a constant

force is applied to one end of the molecule while the other end is fixed.

Finally, in force-quench computations the force on the molecule is reduced

to the final value to initiate mechanical refolding. In both the force-clamp

and force-quench setups the dynamics of the linker (usually hybrid RNA/

DNA handles) is not relevant; however, depending on the characteristics of

the linkers, the dynamics of linker may play an important role in the force-

ramp experiments (24).

Timescales

Since a typical value for the mass of a nucleotide, m ; 300–400 g/mol, the

average distance between the adjacent nucleotides in the SOP representation

of RNA is a � 5 Å, eh ¼ 0.7 kcal/mol, and the natural time is tL ¼
ðma2

eh
Þ1=2 ¼ 3;5ps. We use tL ¼ 4.0 ps to convert simulation times into real

times. To estimate the timescale for mechanical unfolding dynamics, we use

a Brownian dynamics algorithm (28,29), for which the natural time for the

overdamped motion is tH ¼ zeh
kBT

htL. We used z ¼ 100t�1
L in the over-

damped limit, which approximately corresponds to the friction constant of a

nucleotide in water.

The equations of motion in the overdamped limit are integrated using the

Brownian dynamics algorithm. The position of a bead i at the time t 1 h is

given by

xiðt1 hÞ ¼ xiðtÞ1 h

z
ðFiðtÞ1GiðtÞÞ; (2)

where FcðtÞ ¼ �ð@V=@xÞ; the Newtonian force acting on a bead is i; and

G(t) is a random force on ith bead that has a white noise spectrum. The

autocorrelation function for G(t) in the discretized form is

ÆGiðtÞGjðt1 nhÞæ ¼ 2zkBT

h
d0;ndi;j; (3)

where d0, n is the Krönecker delta function; n ¼ 0, 1, 2, . . .; and all the force

simulations are performed at T ¼ 300 K. For the integration time step h ¼
0.1 tL, the 10

6 integration time steps in the overdamped limit (z ¼ 100t�1
L )

are 106tH ¼ 106 zeh
kBT

htL ¼ 47ms with tL ¼ 4 ps, eh � 0.7 kcal/mol, and kBT
� 0.6 kcal/mol. The system composed of RNA and the spring is extended

along the force direction by dx every 104 tH ¼ 0.47 ms integration time

steps. We chose dx ¼ 0.003 nm, so that the pulling speed, v ¼ 0:003nm
0:47ms ¼

6:4mm=s, for h ¼ 0.1 tL. To maintain numerical stability, neither h nor

dx should be too large.

Contact map

In RNA with simple native structures, force-induced unfolding pathways

can be qualitatively predicted from the native structure. To rationalize the

simulated unfolding pathways it is useful to construct RNA contact maps.

We generated the contact maps (Figs. 2, 4, and 5) using the definition of

native contact. More precisely, we generated a matrix Q where matrix ele-

ments are

Qij ¼ QðRc � r
o

ijÞ; (4)

where roij is the distance between two nucleotides in the SOP representation

of the native fold. Representing the native RNA using only the center of

mass of each nucleotide as the interaction center is a drastic simplification.

To ascertain whether the SOP representation misses any essential feature of

the RNA structure we also generated the distance map using the heavy atom

(C, N, O, P) coordinates. The coarse-grained model captures the important

interactions on length scales, i.e.,.;0.7 nm. For example, the SOP contact

map (Fig. 4 C) and the distance map (Fig. 1) of 1uud are similar.

Dynamics of rupture of contacts

The dynamics of RNA unfolding is monitored using a number of variables

including the time-dependence of R and the number of nucleotide-dependent

native contacts Qi(t) that remain at time t. We define QiðtÞ ¼ +N

jðjj�ij.2Þ
QðRC � rijðtÞÞDij, where RC is the cutoff distance for native contacts; rij(t) is

FIGURE 1 The distance map for TAR RNA (PDB code 1uud). The

distance (rij [Å]) between all the heavy atoms (C, N, O, P) are computed for

the nucleotides (ji � jj. 2 with rij , 2 nm). The scale on the right gives the

inverse of distances (1/rij) in color. Small rectangular lattices corresponds to

the nucleotide unit. The index for the heavy atoms is labeled in small

typeface on the i and j axes, and the index of the nucleotides (i ¼ 17–45) is

labeled using a large typeface. Upon coarse-graining using the SOP model,

we obtain the contact map in Fig. 4 C.
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the distance between i and jth nucleotide; and Dij ¼ 1 for native contact,

otherwise Dij ¼ 0. If a certain subdomain of the molecule is disrupted and

loses its contacts, the extension of the molecule suddenly increases and the

mechanical force exerted on the end of the molecule drops instantly. These

molecular events are reflected as rips in the FEC.When the time-dependence

of the force f(t) or the end-to-end distance R(t) is directly compared with

Qi(t) using t as a progressive variable to describe unfolding, the direct

correlation between sudden drops (sudden increase) in the value of f(t),
(R(t)), andQi(t) enables us to unambiguously identify the structures involved

in the dynamics of rupture of contacts at the nucleotide level.

RESULTS AND DISCUSSION

Mechanical unfolding of the secondary
structural elements of RNA

The stability of RNA molecule in the native state can be

approximated as the sum of interactions etot ¼ +
i
eseci 1+

k
eterk

where eseci and eterk are interactions that stabilize the sec-

ondary and tertiary structures, respectively, i refers to the

number of secondary structural elements, and k labels the ter-
tiary contacts that may be mediated by counterions. The con-

tributions from the tertiary interactions are small compared

to the energetics associated with the secondary interactions

(+
i
eseci � +

k
eterk ). Because of the stability gap between the

secondary and the tertiary interactions the analysis of FEC

for RNA can be independently made domain by domain. The

hairpin stacks, which can vary in the length and sequence,

are among the simplest structural motifs. Additional struc-

tural complexity in RNA arises due to the presence of hairpin

loops, bulges, internal loops, and internal multiloops. The

remarkable structural diversity of RNA secondary structures

allows us to probe the sequence and fold-dependent energy

landscape using force as a perturbation. Here, we discuss the

force spectroscopy of relatively simple RNA motifs using

four examples. Many aspects of the physics of mechanical

unfolding of RNA, such as the shifts in the transition-state

locations as rf is changed, can be understood using these

simple structural motifs as examples.

Force-induced transitions in a simple
hairpin (P5GA)

Liphardt et al. (11) showed that the P5ab hairpin, the con-

struct in which P5c stem-loop and the A-rich bulge in P5a are

removed from the P5abc subdomain in T. ribozyme, revers-

ibly folds in an all-or-none fashion upon application of

constant force. The equilibrium between the native basin of

attraction (NBA) and the unfolded basin of attraction (UBA)
can be shifted by altering the value of the constant force, fc.
To probe the two-state behavior of hairpins under force we

used a smaller 22-nt hairpin, P5GA (Protein Data Bank

(PDB) id: 1eor) (17,30). For the P5GA hairpin, simulations

over a wide range of forces can be performed in reasonable

times. The topologically simple hairpin has a single tetra-

loop and nine consecutive basepairs. In an earlier study (17)

we showed, using a minimal three-interaction site (TIS)

model in which each nucleotide is represented by three sites,

that the dynamical behavior of P5GA under tension is quali-

tatively similar to P5ab. The much simpler SOP represen-

tation of P5GA allows us to probe exhaustively the folding

and unfolding kinetics of the hairpin that is manipulated by

force-ramp, force-quench, and force-clamp.

Constant force

The hallmark of P5ab (11) and P5GA (17), when a constant

force is applied to either the 39 or the 59 ends, is the obser-
vation of bistable kinetics. When a constant fc is applied to

the 39 end, P5GA makes transitions (Fig. 2 B) between the

UBA (R� 8 nm) to the NBA (R� 2 nm). At fc ¼ 14.0, 15.4,

and 17.5 pN, a large number of transitions occur over 45-ms

duration, which suggests that the hairpin dynamics is effec-

tively ergodic. As in our previous study (17), the equilibrium

constant between the folded and unfolded hairpin calculated

using a long mechanical unfolding trajectory coincides with

an independent ensemble average calculation, i.e., time

averages are roughly equivalent to ensemble averages. When

fc ¼ 14 pN, the residence time in the NBA is much greater

than in the UBA while, at fc ¼ 16.8 pN, the UBA is

preferentially populated (Fig. 2 B). The population of P5GA

in the NBA changes when fc is varied, as can be seen in the

histogram (P(R)) of the end-to-end distance R (Fig. 2). At fc¼
15.4 pN, which is slightly above the midpoint of the NBA
4 UBA transition, several jumps between the NBA and

UBA are observed. The P(R) distribution reflects the bistable
nature of the landscape. The free energy profile with respect

to R is computed using DF(R) ¼ �kBT log P(R). From P(R)
at fc ¼ 15.4 we can obtain the free energy of stability of the

folded hairpin with respect to the unfolded state using DG �
fcDRUF where DRUF is the distance between the folded and

unfolded states of P5GA. Using DRUF � 6 nm, we find that

DG � 13 kcal/mol. The Vienna RNA package (31), which

uses entirely different free energy parameters for RNA, gives

DG � 12.8 kcal/mol. This comparison shows that the SOP

model can, for simple structures, give accurate results for

stability. At fc ¼ 15.4 pN, the transition barrier is ;1.5 kBT.
The UBA is more populated at this value of fc. The observed
transition times are much shorter than the residence times

in each basin of attraction, which is also a reflection of

the underlying cooperativity of the all-or-none of nature of

hopping between UBA and NBA.
Qualitatively similar results were observed in our previous

study using the three-interaction site (TIS) model (17). How-

ever, the values of the midpoint of the force was approx-

imately a factor-of-two smaller in the TIS model than in the

SOP model. Despite the large differences in the nature of the

force fields, the overall results are robust, suggesting that it is

the underlying native structure determining the nature of the

force-induced transitions in simple RNA. Indeed, for simple

structures the mechanism of forced unfolding in RNA
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helices are imprinted in the contact map (Fig. 2 A), which
is a two-dimensional representation of the folded hairpin

(Methods). The clustered band in the contact map suggests

that P5GA should unfold when a critical number of stacking

interactions are unzipped. Thus, the contact map for P5GA

(and presumably P5ab) is consistent with the observed two-

state kinetics. As the architecture of the native state becomes

more complex, it becomes difficult to anticipate the unfold-

ing mechanism using the contact map alone (see below).

Force-ramp

We also performed force-ramp simulations by subjecting the

P5GA hairpin to a continuously changing force, i.e., varying

the loading rate (Methods). The simplicity of the SOP model

allows us to use values of rf that are comparable to those

used in laser optical tweezer (LOT) experiments. At rf ¼
45 pN=sð;10rLOTf ), the force-extension curves show a

transition to the UBA at f ; 13 pN (Fig. 3 A). As the force
dynamically increases, we observe bistable fluctuations in

the FEC between theNBA and theUBA just as when force is

held constant (Fig. 3 A). The conformational fluctuations

between the two states are unambiguously seen in the time-

dependence of the end-to-end distance (R(t)) (Fig. 3 B). As
time progresses, the force is ramped up, resulting in global

unfolding (R � 8 nm) for t . 400 ms (Fig. 3 B). During the

timescale of simulation, we find frequent and sharp transi-

tions between the UBA and the NBA (Fig. 3 B).
The location of the unfolding transition state DxTSF for

proteins and RNA is often estimated from force-ramp ex-

periments using the variation of the most probable rupture

force with rf ([f*, log rf] plot). The loading rate, rf ¼ df(t)/dt,
and can be accurately estimated from the slope of the time-

dependence of f(t) as a function of time. The slope of f(t) as a
function of t (Fig. 3 C) is nearly the same as rf � ks 3 v,
where v is the pulling speed. Strictly speaking, rf ¼ keff 3 v
with k�1

eff ¼ k�1
s 1k�1

mol1k�1
linker and ks, kmol, and klinker are the

spring constants of the optical trap, the RNA molecule, and

linker, respectively. Typically ks � kmol, klinker, thus keff � ks
(32). Throughout the article, we obtain the loading rate using

rf ¼ ksv.
From the force distributions, computed at four different

loading rates (Fig. 3 D), we observe that the most probable

rupture force (f*) does not increase logarithmically over a

wide range of loading rates (Fig. 3 E). Only if the range of

rf is restricted, f* changes linearly with log rf (33). The loca-
tion of the transition state (DxTSF ) is usually calculated using

f � � ð kBT
DxTS

F

Þlogrf (33), which may be reasonable as long as rf
range is small. However, the [f*, log rf] plot is highly non-

linear (Fig. 3 E). If we use linear regression to analyze the

[f*, log rf] plot then DxTSF ;0:8 nm for the distance between

theNBA and the transition state. The small value of DxTSF is a

FIGURE 2 (A) The secondary structure of P5GA hairpin

and its contact map. (B) The time-dependent fluctuations of

P5GA hairpin between the folded (R � 1.5 nm) and

unfolded (R � 8 nm) states. The end-to-end distance

changes spontaneously between two values. The force-

clamped dynamics of the P5GA hairpin is probed for ;45

ms. The histograms P(R) at fc ¼ 14.0, 15.4, and 16.8 pN

are shown. The free energy profile DF(R) as a function of

R for fc ¼ 15.4 pN on the right shows two-state behavior.
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consequence of the large variation of DxTSF as rf is changed
(17,34). If the loading rate is varied over a broad range, the

rf-dependence of Dx
TS
F is manifested as a pronounced convex

curvature (24) in the [f*, log rf] plot (Fig. 3 E). Based on the

equilibrium free energy profile F(R) as a function of R (17),

we expect that, for P5GA, DxTSF � 3 nm if rf is small. Indeed,

from the constant force simulation results in Fig. 2 B we find

DxTSF � RU�RF

2
. Thus, the slope of [f*, log rf] should decrease

(DxTSF increases) as rf decreases. To illustrate the dramatic

movement in the transition state, we have calculated DxTSF
using f* values for two consecutive values of rf. For exam-

ple, using f* � 12.5 pN at rf ¼ 450 pN/s and f*� 14.9 pN at

rf ¼ 4.5 3 103 pN/s (a value that can be realized in atomic

force microscopy experiments), we obtain DxTSF � 4.0 nm.

From the values of f* at five values of rf, we find that DxTSF
can move dramatically (Fig. 3 E). In particular, we find that

DxTSF changes by nearly a factor of 10 as the loading rate is

decreased to values that are accessible in LOT experiments

(see inset in Fig. 3 E). Because of the nearly logarithmic

variation of DxTSF on rf over a narrow range of rf, we do not

expect DxTSF to change appreciably if rf is lowered from

45 pN/s to �5 pN/s. At high rf or fc, the unfolded state

is greatly stabilized compared to the folded state. From

Hammond’s postulate (35), generalized to mechanical un-

folding (24), it follows that, as fc increases, DxTSF should

move closer to the native state. The simulations are, there-

fore, in accord with the Hammond’s postulate.

Force-induced transition in hairpins with bulges,
internal loops—TAR RNA (PDB id: 1uud)

The presence of bulges or internal loops contributes to the

bending of the stiff helical stack. The enhanced flexibility

enables formation of intramolecular tertiary contacts or facili-

tates RNA-protein interactions. Base-sugar and base-phosphate

as well as base-base contacts are found in these structural

elements in the native structure. For example, the base group

of U23 in HIV-1 TAR RNA (PDB code 1uud (36), Fig. 4 A),
protrudes away from the hairpin stack and makes tertiary

contacts with i ¼ 38–41 (see three-dimensional structure in

Fig. 4 B). The inherent flexibility in the bulge region also

facilitates interaction with ligands (37,38).

To probe the effect of the U23C24U25 bulge (Fig. 4 A) on
mechanical unfolding, we performed force-ramp and force-

clamp simulations. The time-dependence of R at fc ¼ 14 pN

(NBA is the preferred state) shows multiple transitions.

Unlike in P5GA some of the transitions to UBA involves

FIGURE 3 Force-ramp unfolding of

P5GA hairpin. (A) An example of FEC

at the loading rate rf ¼ 45 pN/s (ks ¼
0.07 pN/nm, v ¼ 0.64 mm/s). The data

points are recorded every 50 ms (gray),

but for better illustration the running

average is displayed every 500 ms

(red). (B) The end-to-end distance (R)

as a function of time. (C) Time-

dependence of f. The loading rate rf ¼
df/dt is nearly a constant. (D) Distri-

bution of unbinding forces from 100

trajectories at four loading rates

rf ¼ rof ,
10
3
rof ,

20
3
rof , and 10 rof (rof ¼

4:53103pN=s(ks ¼ 0.7 pN/nm, v ¼ 6.4

mm/s)). The red star is the rupture force

value (f* ¼ 12.5 pN) at rf ¼ 45 pN/s.

(E) Plot f*, the most probable unfolding

force, as a function of rf. The position

of transition state DxTSF is computed

using DxTSF ¼ kBT
Dlog rf
Df� . The inset

shows the variation of DxTSF as a

function of rf.

736 Hyeon and Thirumalai

Biophysical Journal 92(3) 731–743



Mechanical Unfolding of RNA 737

A uGGG B
/C A

30 C - G'
G-C
A-U

UG - C
C ~ 25 30 35

A - u-40
G-C

2020-A - U
C-G
G-C
G-C 25

50

40

Z
30

E40 40
30

35
I-

1Il 20
~ 1 .

30 30 ~ 40

Lr
10 -
~N

<]

~.,
o -

45

~ 20 20 -10 -

-20
0 10 15 20

10
R [nm]

0
5 10 15 0 5 10 15

R [nm] R[nm]

D
10

14.0pN
5

0

E 10
c......

5II:

10

5

0
0 50 100 150 200

time [ms]

FIGURE 4 Analysis of force-induced transitions in TAR RNA hairpin. (A) Secondary structure. (B) In the three-dimensional structure, the nucleotides
(i = 23, 24) in the bulge are in yellow. (e) The contact map and the energy profile at three values off The plot suggests the presence of one intermediate at
R ~ 6 nm whenf 01 O. (D) The results of force-clamp simulations atfc = 14 pN, 14.7 pN, and 15.4 pN. The dynamics of R is probed for 150 ms and the
histograms peR) are given in the shaded color. The corresponding free energy profiles computed using !1F(R)lkB T = -log peR) are shown on the right. The
structures that correspond to the three basins of attraction are displayed at the top. (E) FEes at the loading rates, rf' = 4.5 X103 pN/ s (k, = 0.7 pN/nm, v =

6.4 /Lm/s) (left) and rf' = 4.5 X 102 pN/s (k, = 0.7 pN/nm, v = 0.64 /Lm/s) (right) for a number of molecules. The arrow in the left panel is the signature of a
kinetic intermediate, which is absent when rf is reduced.

a small pause in intermediate values of R(5-8) nm, which is
suggestive of a short-lived intermediate. Force-clamp sim
ulations also show that R fluctuates between 2 nm (NBA)
and 10 nm (UBA). In addition, there is a signature for an

intermediate with R between (5 and 8) nm. The free energy
profile D.F(R) shows that there is a high free energy inter
mediate centered at R ~ 6 nm that is metastable with respect
to the NBA and the UBA. Atfc = 14 pN, the intermediate is
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less stable than the UBA and the NBA. It is likely that the

instability of the intermediate state might make it difficult

for experimental detection. As force is increased to fc (¼
14.7 pN), which is very close to the critical value at which

the stabilities of the folded and stretched states are nearly

equal, the residence times in the NBA and UBA are similar

(see middle panel in Fig. 4 D). The P(R) distribution and

DF(R) as a function of R show that fc ¼ 14.7 pN is close to

the critical value. Interestingly, at fc ¼ 14.7 pN, the shallow

high free energy intermediate is less pronounced than at fc ¼
14.0 pN (Fig. 4 D). When force is further increased to fc ¼
15.4 pN, the intermediate becomes essentially a part of the

UBA. When the hairpins are unzipped, the presence of bulges

and internal loops contributes to the formation of the inter-

mediate state when tertiary contacts between these bulges

and the rest of the structure are disrupted. In the predicted

intermediate, the first six basepairs (Fig. 4 A) and additional

contacts associated with these nucleotides are ruptured (see

the representative structures in Fig. 4 D).
The contact map for TAR RNA has two ‘‘clusters’’ (Fig. 4

C): one at the upper-right corner that is associated with the

lower hairpin stack, and the other (nucleotides 25–31) that

represents the structure from the bulge to the apical end. As

the lower stack unfolds, the force propagation goes along the

diagonal for the upper cluster to the lower cluster (Fig. 4 C).
We can qualitatively predict the kinetic barriers that oppose

forced-unfolding at high rf using the contact map computed

from the native structure (Fig. 4 C). If hairpin unfolding oc-

curs in a sequential unzipping manner, then we expect (upon

applying force to the 39 end) the structure to disrupt along the
direction specified by the series of red arrows in Fig. 4 C. We

predict that, upon disruption of the first basepair (G17C45),

the other contacts involving G17 and C45 ((17,39), (17,40),

(17,41), (17,42), (17,43), (17,44), (17,45), (18,45), (19,45),

and (20,45)) should spontaneously break (upper cluster).
Similarly, upon rupture of the G18-C44 basepair, the con-

tacts associated with these nucleotides are disrupted (lower
cluster). Therefore, the contact map suggests that rupture

should occur as force propagates along the diagonal direction

(red arrows in Fig. 4 C). When the contacts associated with

the lower clusters unravel, a high energy intermediate is

populated (Fig. 4 C). Only detailed simulations can reveal

the stability and lifetime of the intermediate.

The free energy profile as a function of R can also be

computed from the contact map using DFðRÞ ¼ �Nceh3
ÆNcðT ¼ 300KÞæ=NG � Nd 3 ðkBTlss=dÞlog½sinhðfd=kBTÞ=
ðfd=kBTÞ�, where ÆNc(T ¼ 300 K)æ is the average number of

contacts at temperature T ¼ 300 K at zero force, and NG is

the corresponding quality in the PDB structure. The first term

is the energetic contribution arising from Nc surviving con-

tacts and the second term accounts for the entropy arising

from the segment in which Nd contacts are disrupted. The

energetic contribution using Nd and the entropy is given by

the product of Nd and the entropy associated with the freely

jointed chainlike model. We used Kuhn length d ; 2.0 nm,

and the effective nucleotide length of single-strand RNA, lss
; 0.59 nm. The chain extension is given by R ¼ R0 1 Ndlss,
where R0 is the end-to-end distance in the folded state. In the

presence of constant force, the free energy profile tilts to

UBA. The free energy profile DF(R) at fc � 17 pN is

suggestive of an intermediate R � 6 nm, whereas at higher

force, the signature of the intermediate disappears (see also

Fig. 4D). Since we approximated the conformational entropy

using the freely jointed chain model in this exercise, the

estimate for the equilibrium critical force does not coincide

with the SOP simulations, which shows that the freely jointed

chain model does not estimate the entropy of the finite-sized

RNA structures. Nevertheless, for simple hairpins, the number

of kinetic barriers or kinetic intermediates can be predicted

using this simple analysis based only on the knowledge of

native contact topology. More recently, Cocco et al. (23)

have proposed a similar scheme using the Monte Carlo sim-

ulations on the sequence-dependent free energy profile com-

puted with the Turner’s thermodynamic rule (39). A similar

analysis was previously used to estimate equilibrium-

unbinding force for proteins (40).

The FECs obtained using force-ramp simulations at rf ¼
4.5 3 103 pN/s (Fig. 4 E) also show that one intermediate is

present. At this value of rf, the presence of an intermediate

occurs as a rip in the FECs (indicated using an arrow) at f �
23 pN. However, when rf is lowered by a factor of 10 (see

right panel in Fig. 4 E), there is no signature of a rip at f �
15–17 pN that corresponds to a pause in a high free energy

metastable intermediate. As time increases, the global un-

folding are preceded by fluctuations between metastable

intermediates to the folded state, and TAR RNA unfolds in

an all-or-none manner at a force of;20 pN. The picture that

emerges from force-ramp simulations—namely, the presence

of an intermediate at high rf and its absence at low rf—is

completely consistent with constant force simulations. The

rf-dependent rupture of RNA structures is a general property

of self-organized molecules, which we explore fully using

physical arguments and simulations of ribozymes (see below).

HCV IRES domain II

We consider mechanical unfolding of the 55-nt domain IIa of

the Hepatitis C Viral (HCV) genome whose NMR structure

(41) is known (PDB code: 1p5m). The secondary structure

map of the hairpin contains bulges and is capped by the

UUCG tetraloop at the apical end (Fig. 5 A). The domain IIa

oligonucleotide adopts a distorted L-shaped structure (41)

(Fig. 5 B) with a relatively flexible hinge bulge (A53–A57)

that is stabilized by Mg21. Just as for the TAR RNA, the

number of plausible kinetic intermediates (in the appropriate

force regime) in the NBA / UBA transition and the range

of force and R values over which they occur can be

anticipated using the contact map, which reflects the nature

of the native fold. The contact map (Fig. 5 C) shows that it
can be partitioned into three distinct clusters that are spatially
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adjacent. Upon application of force to the 39 end, the rupture
of contacts associated with nucleotides G1 and C55 occurs

and force propagates diagonally (see upper-right corner of
Fig. 3 C). There is a change in the structure of the contact

map, with the breaking of contacts involving the basepair

(A8–U49) that signal the formation of the first intermediate.

As a result, force propagates along the diagonal associated

with second cluster. Upon disruption of A8U49, basepair

force propagates along the diagonal of the subcontact map

(blue line in Fig. 5 C). The second intermediate is populated

when all the base contacts involving this substructure

unravel. Similarly, for 1p5m, we expect population of the

FIGURE 5 Force-induced transitions in domain IIa of HCV IRES RNA. (A) Secondary structure. (B) The nucleotides (i ¼ 12–16) in bulge in the three-

dimensional structure are in yellow. (C) The contact map and the associated energy profile as a function of R at three values of fc. The three clustered regions are

encircled for clarity. The presence of three metastable intermediates at R ; 5, 15, 22, and 28 nm is indicated by arrows. (D) The results of force-clamp

simulations at fc ¼ 18.2, 21.0, and 21.7 pN. The multiple dynamical transitions in the hairpin is probed by following the time-dependence of R. For each force,
the transitions, which are probed for 800-ms duration in 10 trajectories, are shown for three molecules. The distributions P(R) averaged over time and the initial

conditions (the dots indicate seven other trajectories) are shown next to the displayed trajectories, and the free energy profile DF(R) is shown below. The colors in

the DF(R) profiles are the same as in P(R) at each force. The structures of the intermediates, the native conformation, and the unfolded structures are explicitly

shown. (E) FECs at the loading rate, rof ¼ 4:53103 pN=s (ks ¼ 0.7 pN/nm, v ¼ 6.4 mm/s) for three trajectories. The arrow indicates the kinetic intermediates.
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third intermediate, which opposes forced unfolding associ-

ated with substructure-involving contacts associated with the

nucleotides near the vicinity of the green line in Fig. 5 C.
Explicit force-clamp simulations confirm that there indeed

are three intermediates associated with mechanical unfolding

of 1p5m. We generated 10 unfolding trajectories for a

cumulative 800 ms at fc ¼ 21 pN. As indicated approxi-

mately by the energy profile (Fig. 5 C), we find multiple

transitions between the structures that are revealed as

plateaus in R(t) (Fig. 5 D). Not all the possible transitions

are explicitly observed in all the trajectories. This observa-

tion may be a reflection of the intrinsic heterogeneity or

stochastic nature of fluctuations. By averaging the residence

time in each basin of attraction over time and the initial

conditions, we obtain P(R) and the associated free energy

profile (Fig. 5 D). The NBA / UBA occurs through a

sequence of three intermediates. The barrier separating the

UBA and the first intermediate (R � 5 nm) is larger than the

subsequent ones. All the intermediates, whose populations

are fc-dependent (see below), are metastable with respect to

NBA and UBA. The predicted intermediates can be detected

experimentally provided they are long-lived. If the lifetime

of the metastable intermediate is too short, then a high time

resolution would be required. An identical unfolding path-

way is also found in force-ramp simulations (Fig. 5 E) in
which we find, in many trajectories, three rips that represent

the kinetic intermediates. The forces at which these

intermediates are populated are higher because the loading

FIGURE 6 (A) The secondary structure of 109-nucleotide pRNA. (B) The four FECs of pRNA at rof ¼ 4:53103 pN=s (ks ¼ 0.7 pN/nm, v ¼ 6.4 mm/s). (C)

The rupture history of pRNA (Qi(t)) corresponding to FECs in panel B. Here Qi(t) is the number of contacts that the nucleotide i has at time t. The scale on the

right represents the number of contacts associated with the ith nucleotide. Darker shades have a larger number of contacts than the lighter shades. (D) Structures
of pRNA at each stage of unfolding, as time progresses, is illustrated. Structures in i–iii are associated with kinetic barriers in the red trajectory in panel B.
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rate is large. The structures that are populated along the

unfolding pathway (Fig. 5 D) are in accord with the predic-

tions based on the secondary structure and contact maps.

Just as found explicitly for TAR RNA, the intermediates

may not be populated at lower fc or rf values. From the

energy profile in Fig. 5 C, we find (approximately) that the

energy associated with a putative intermediate at R � 10 nm

(see Fig. 5 D) is DF(R � 10 nm) �50 kBT � 200 pN 3 nm.

Thus, the smallest value of f required to transiently populate

the R � 10 nm intermediate is fi � DF(R � 10 nm)/10 nm �
20 pN. Only if f exceeds 20 pN, can these intermediates be

significantly populated. At these forces, the predicted inter-

mediates are metastable with respect to both UBA and NBA.
Their experimental detection would depend on their life-

times. Unless relatively high time resolution is used in ex-

periments, for practical purposes, mechanical unfolding of

domain IIa of the HCV IR2S RNA might follow two-state

behavior. This simple consideration and the simulations might

explain the apparent absence of intermediates in the recent

constant-force LOT experiments on TAR RNA performed at

f , 15 pN.

Three-way junction prohead RNA (pRNA)

The next level of complexity in the secondary structural

RNA motif is the one that contains an internal multiloop. We

choose the prohead RNA (PDB code 1foq (42)) which is part

of the f29 DNA packaging motor. In the context of the

motor, pRNA assembles as a pentamer with each monomer

consisting of two stem-loops that are separated by an internal

multiloop (Fig. 6 A). Even at this level of complexity, it be-

comes difficult to predict the kinetic barriers associated with

force-induced unfolding using the contact map alone. For the

109-nucleotide RNA, we generated four mechanical force-

ramp unfolding trajectories (Fig. 6 B). The mechanical un-

folding of the structure exhibits multiple rips signaling the

presence of kinetic barriers separating the NBA and UBA
(Fig. 6 B). The four different FECs, colored in black, red,

green, and blue, are distinct. Variations in the rip dynamics

from molecule to molecule may reflect the heterogeneous

nature of the unfolding pathways. Upon force-ramp, unfold-

ing of the pRNA begins at R ; 2 nm in all the trajectories

(Fig. 6 B). The FEC in red has three rips at R � 15, 28, and

38 nm, while the FEC in green has only one rip at R� 38 nm.

For pRNA, which is structurally more complex than the sim-

pler three-way junction (e.g., P5abcDA; see (11)), the details
of the unraveling mechanism are difficult to extract using the

FECs alone. To unambiguously extract the unfolding path-

ways we have calculated the time-dependence of nucleotide-

dependent rupture (Fig. 6 C) of individual contacts (Methods).

Because of the additional stem-loop that branches out of

the internal multiloop (Fig. 6 A), there are potentially two

routes by which the unfolding of pRNA can proceed. One is

P1 / P3 / P2, and the other is P1 / P2 / P3. We can

rule out the unfolding pathways such as P2 / P1 / P3 or

P3 / P2 / P1, because of the directional nature of the

applied mechanical force. It should be stressed that such

pathways can emerge if force is applied at points other than

the ends of the chain. Using the time evolution of the native

contact of the ith nucleotide, Qi(t), we unambiguously pin-

down the time series of the rupture of individual contacts

upon force-ramp (Fig. 6 C). The rupture pattern of the indi-

vidual contacts in all the trajectories is very similar (Fig. 6C),
despite seeming differences in the FECs. From Fig. 6 C, it is
clear that the nucleotides in P1-unravel (Qi(t)) associated

with these nucleotides are zero for t. 5 ms) early (t; 5 ms),

which signals the first event in pRNA unfolding. Sub-

sequently, Qi(t) for i ; (70–85) are disrupted. This shows

that the smaller stem-loop in P3 opens, forming a cusp at R;
15 nm in the FEC. The bigger stem-loop with the large bulge

in P2 follows the opening of P3, which is manifested as a rip

near R; 35 nm in the FEC. Thus, the unfolding pathway for

pRNA is P1 / P3 / P2. Depending on the trajectory, not

all the three rips are detected in the FECs, although the

unfolding pathway defined by the subdomains is not altered.

The sequence of structural changes that accompany the

unfolding of pRNA for the trajectory in red in Fig. 6 B is

shown in Fig. 6 D. Force-ramp simulations of pRNA show

that, even when the native structure is not too complex, it is

difficult to predict the nature of kinetic barriers without de-

tailed dynamical simulations or experiments. It would be

interesting to test these predictions using LOT experiments.

CONCLUSIONS

We have used the self-organized polymer representation of a

variety of RNA structures to predict their mechanical unfold-

ing trajectories. Constant force and force-ramp simulations

show that dramatic changes in the force profiles take place as

the loading rates and the values of the force are varied. If the

force is varied over a wide range, then regions of the energy

landscape that cannot be accessed in conventional experi-

ments can be probed. However, to realize the full utility of

the single molecule force spectroscopy, it becomes necessary

to use force in distinct modes (constant force, force-ramp,

and other combinations) along with reliable computations

that can mimic the experimental conditions as closely as pos-

sible. The simulations of RNA, with diverse native struc-

tures, using the SOP model illustrate the structural details in

the unfolding pathways that are experimentally accessible. It

is remarkable that the simple, native-state-based SOP model

can quantitatively predict the FECs for a number of RNA

molecules with varying degree of structural complexity. We

conclude the article with the following additional remarks.

Transition state movements show changes from
plastic to brittle behavior

The small size and simple architecture of RNA hairpins has

allowed us to explore their response to force over a range of
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rf that spans four orders of magnitude. The lowest rf value is
close to those used in LOT experiments. A key prediction of

our simulations is that the location of the transition state for

P5GA moves dramatically from;6 nm at low rf to;0.5 nm

at high rf (see inset to Fig. 3 E). The large value of DxTSF at

low rf suggests that P5GA is plastic while the small DxTSF at

high rf is suggestive of brittle behavior. The mechanical

properties of RNA structures can be drastically altered by

varying the loading rate, which is reminiscent of the changes

in the visco-elastic behavior of polymeric materials that

changes with frequency. The transformation from plastic to

brittle behavior can be captured by the fragility index (34),

used to describe mechanical unfolding of hairpins. Although

we have discussed the rf-dependent movement of the transi-

tion states using P5GA as an example, we predict that this

result is general and should be observed in other RNA

structures as well.

The predicted movement in the transition state as a func-

tion of rf might help resolve the apparent differences in the

estimated values of DxTSF in proteins using laser optical

tweezer (LOT) and atomic force microscopy (AFM) exper-

iments. The typical value of DxTSF for a number of proteins

using AFM is approximately 0.5 nm (43), whereas DxTSF for

RNase H (44) (the only protein that has been experimentally

studied using the LOT setup) is;6 nm. We believe that such

a large difference is not merely due to changes in native topo-

logy and stability, which undoubtedly are important. Rather,

it is due to the variations in rf. The value of rf in LOT is

typically ,10 pN/s, whereas rf in AFM varies from (100–

1000) pN/s. Our findings here suggest that the different

loading rates used in the two setups might explain the large

differences in the values of DxTSF . Thus, it is important to

perform experiments on a given protein using both LOT and

AFM setups to sort out the loading-rate-dependence of the

location of the transition state.

Forced-unfolding pathways for simple RNA are
encoded in the contact map

From the contact map it is possible to visualize the directions

along which the applied tension propagates. As illustrated

using simple RNA structures, the unfolding pathway depends

on the direction of tension propagation and local structural

stability. Using the contact map alone one can anticipate the

most probable unfolding pathways. Here, we have shown

that for P5GA, TAR RNA, and HCV IRES domain II it is

possible to get a qualitative picture of forced-unfolding using

the reduced representation of RNA structures in the form

of contact maps. However, as the structural complexity

increases and a number of alternate unfolding pathways

become possible, the simple native-structure-based method

alone is not always sufficient in predicting how a partic-

ular structure unravels. Such is the case in the unfolding of

the three-way junction prohead RNA studied here at con-

stant rf.

Limitations of the SOP model

The SOP model is remarkably successful in reproducing the

unfolding pathways of complex ribozymes in a realistic

fashion. Surprisingly, for both proteins (27) and RNA, the

SOP model is quite successful in predicting the nature of

unfolding pathways. The unfolding dynamics of proteins, as

well as RNA, with size exceeding 250 residues or nucleo-

tides, can be conveniently simulated on a PC in a few days

with the simulation condition used in this article (rf �
102�105 pN/s). Quenching the force to zero drives the stretched

state of molecule close to the native state (27), which allows

us to map the folding pathways starting from different initial

conditions. The SOP model consisting of the polymeric

nature and the minimal characteristics of RNA architecture is

reasonable in visualizing the forced-unfolding and force-

quench refolding dynamics of RNA molecules. We believe

that, when accompanied with the experimental analysis, the

SOP model can serve as a useful tool that provides insights

into the folding/unfolding process of large macromolecules.

However, as with all models, there are certain limitations of

the SOP model that prevent us from making quantitative

predictions of the measurable force-extension curves, espe-

cially for large RNA. The sequence and/or the counterion

effect are not explicitly taken into account in the SOP model.

The neglect of explicit counterions in the simulations fails to

capture their specific coordination with RNA, which in turn

leads to an underestimate of the local stability of the folded

structure. Hence, in applying the SOP model to investigate

structures in which counterion-mediated tertiary interactions

determine local structures, eh should be varied. Despite the

obvious limitations, it is clear that the SOP model is powerful

enough to provide insights into the structures and pathways

that are explored upon application of force. The model

cannot only be used as a predictive tool (as shown here with

explicit applications on systems for which experiments are

not currently available) but also can be used to interpret ex-

perimental results.
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