57 research outputs found
Statistical Survey of Type III Radio Bursts at Long Wavelengths Observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves Instruments: Goniopolarimetric Properties and Radio Source Locations
We have performed statistical analysis of a large number of Type III radio
bursts observed by STEREO between May 2007 and February 2013. Only intense,
simple, and isolated cases have been included in our data set. We have focused
on the goniopolarimetric (GP, also referred to as direction-finding) properties
at frequencies between kHz and MHz. The apparent source size
is very extended () for the lowest analyzed frequencies.
Observed apparent source sizes expand linearly with a radial distance
from the Sun at frequencies below MHz. We have shown that Type III radio
bursts statistically propagate in the ecliptic plane. Calculated positions of
radio sources suggest that scattering of the primary beam pattern plays an
important role in the propagation of Type III radio bursts in the IP medium
Van Allen Probes observations of chorus wave vector orientations: Implications for the chorus-to-hiss mechanism
Using observations from the Van Allen Probes EMFISIS instrument, coupled with ray tracing simulations, we determine the fraction of chorus wave power with the conditions required to access the plasmasphere and evolve into plasmaspheric hiss. It is found that only an extremely small fraction of chorus occurs with the required wave vector orientation, carrying only a small fraction of the total chorus wave power. The exception is on the edge of plasmaspheric plumes, where strong azimuthal density
gradients are present. In these cases, up to 94% of chorus wave power exists with the conditions required to access the plasmasphere. As such, we conclude that strong azimuthal density gradients are actually a requirement if a significant fraction of chorus wave power is to enter the plasmasphere and be a source of plasmaspheric hiss. This result suggests it is unlikely that chorus directly contributes a significant fraction of plasmaspheric hiss wave power
Identifying the source region of plasmaspheric hiss
The presence of the plasmaspheric hiss emission around the Earth has been known for more than 50 years but its origin has remained unknown in terms of source location and mechanism. The hiss, made of whistler mode waves, exists for most of the time in the plasmasphere and is believed to control the radiation belt surrounding the Earth which makes its understanding very important. This paper presents direct observational evidence that the plasmaspheric hiss originates in the equatorial region of the plasmaspheric drainage plumes. It shows that the emissions propagate along the magnetic field lines and away from the equator in the plumes but towards the equator at lower L shells inside the plasmasphere. The observations also suggest that the hiss waves inside the plasmasphere are absorbed as they cross the equator
Whistler mode waves and the electron heat flux in the solar wind: Cluster observations
The nature of the magnetic field fluctuations in the solar wind between the
ion and electron scales is still under debate. Using the Cluster/STAFF
instrument, we make a survey of the power spectral density and of the
polarization of these fluctuations at frequencies Hz, during five
years (2001-2005), when Cluster was in the free solar wind. In of
the selected data, we observe narrow-band, right-handed, circularly polarized
fluctuations, with wave vectors quasi-parallel to the mean magnetic field,
superimposed on the spectrum of the permanent background turbulence. We
interpret these coherent fluctuations as whistler mode waves. The life time of
these waves varies between a few seconds and several hours. Here we present,
for the first time, an analysis of long-lived whistler waves, i.e. lasting more
than five minutes. We find several necessary (but not sufficient) conditions
for the observation of whistler waves, mainly a low level of the background
turbulence, a slow wind, a relatively large electron heat flux and a low
electron collision frequency. When the electron parallel beta factor
is larger than 3, the whistler waves are seen along the
heat flux threshold of the whistler heat flux instability. The presence of such
whistler waves confirms that the whistler heat flux instability contributes to
the regulation of the solar wind heat flux, at least for 3, in the slow wind, at 1 AU.Comment: The Astrophysical Journal, 2014, in pres
Statistical properties of plasmaspheric hiss from Van Allen Probes observations
Van Allen Probes observations are used to statistically investigate plasmaspheric hiss wave properties. This analysis shows that the wave normal direction of plasmaspheric hiss is predominantly field aligned at larger L shells, with a bimodal distribution, consisting of a near‐field aligned and a highly oblique component, becoming apparent at lower L shells. Investigation of this oblique population reveals that it is most prevalent at L 0.01 (or f > 700 Hz), low geomagnetic activity levels, and between 1900 and 0900 magnetic local time. This structure is similar to that reported for oblique chorus waves in the equatorial region, perhaps suggesting a causal link between the two wave modes. Ray tracing results from HOTRAY confirm that it is feasible for these oblique chorus waves to be a source of the observed oblique plasmaspheric hiss population. The decrease in oblique plasmaspheric hiss occurrence rates during more elevated geomagnetic activity levels may be attributed to the increase in Landau resonant electrons causing oblique chorus waves to be more substantially damped outside of the plasmasphere. In turn, this restricts the amount of wave power that can access the plasmasphere and evolve into oblique plasmaspheric hiss. These results confirm that, despite the difference in location of this bimodal distribution compared to previous studies, a direct link between oblique equatorial chorus outside of the plasmasphere and oblique hiss at low L shells is plausible. As such, these results are in keeping with the existing theory of chorus as the source of plasmaspheric hiss
What are the fundamental modes of energy transfer and partitioning in the coupled Magnetosphere-Ionosphere system?
The fundamental processes responsible for energy exchange between large-scale electromagnetic fields and plasma are well understood theoretically, but in practice these theories have not been tested. These processes are ubiquitous in all plasmas, especially at the interface between high and low beta plasmas in planetary magnetospheres and other magnetic environments. Although such boundaries pervade the plasma Universe, the processes responsible for the release of the stored magnetic and thermal plasma energy have not been fully identified and the importance of the relative impact of each process is unknown. Despite advances in understanding energy release through the conversion of magnetic to kinetic energy in magnetic reconnection, how the extreme pressures in the regions between stretched and more relaxed field lines in the transition region are balanced and released through adiabatic convection of plasma and fields is still a mystery. Recent theoretical advances and the predictions of large-scale instabilities must be tested. In essence, the processes responsible remain poorly understood and the problem unresolved. The aim of the White Paper submitted to ESA's Voyage 2050 call, and the contents of this paper, is to highlight three outstanding open science questions that are of clear international interest: (i) the interplay of local and global plasma physics processes: (ii) the partitioning during energy conversion between electromagnetic and plasma energy: and (iii) what processes drive the coupling between low and high beta plasmas. We present a discussion of the new measurements and technological advances required from current state-of-the-art, and several candidate mission profiles with which these international high-priority science goals could be significantly advanced.Peer reviewe
Cluster in the Auroral Acceleration Region
Due to a fortuitous evolution of the Cluster orbit, the Cluster spacecraft penetrated for the first time in its mission the heart of Earth's auroral acceleration region (AAR) in December 2009 and January 2010. During this time a special AAR campaign was carried out by the various Cluster instrument teams with special support from ESA and NASA facilities. We present some of the first multi-spacecraft observations of the waves, particles and fields made during that campaign. The Cluster spacecraft configuration during these AAR passages was such that it allowed us to explore the differences in the signatures of waves, particles, and fields on the various spacecraft in ways not possible with single spacecraft. For example, one spacecraft was more poleward than the other three (C2), one was at higher altitude (C1), and one of them (0) followed another (C4) through the AAR on approximately the same track but delayed by three minutes. Their separations were generally on the order of a few thousand km or less and occasionally two of them were lying along the same magnetic field line. We will show some of the first analyses of the data obtained during the AAR campaign, where upward and downward current regions, and the waves specifically associated with those regions, as well as the auroral cavities, were observed similarly and differently on the various spacecraft, helping us to explore the spatial, as well as the temporal, aspects of processes occurring in the AAR
The Comet Interceptor Mission
Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms−1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule
- …