50 research outputs found
Z-Selective Olefin Metathesis on Peptides: Investigation of Side-Chain Influence, Preorganization, and Guidelines in Substrate Selection
Olefin metathesis has emerged as a promising strategy for modulating the stability and activity of biologically relevant compounds; however, the ability to control olefin geometry in the product remains a challenge. Recent advances in the design of cyclometalated ruthenium catalysts has led to new strategies for achieving such control with high fidelity and Z selectivity, but the scope and limitations of these catalysts on substrates bearing multiple functionalities, including peptides, remained unexplored. Herein, we report an assessment of various factors that contribute to both productive and nonproductive Z-selective metathesis on peptides. The influence of sterics, side-chain identity, and preorganization through peptide secondary structure are explored by homodimerization, cross metathesis, and ring-closing metathesis. Our results indicate that the amino acid side chain and identity of the olefin profoundly influence the activity of cyclometalated ruthenium catalysts in Z-selective metathesis. The criteria set forth for achieving high conversion and Z selectivity are highlighted by cross metathesis and ring-closing metathesis on diverse peptide substrates. The principles outlined in this report are important not only for expanding the scope of Z-selective olefin metathesis to peptides but also for applying stereoselective olefin metathesis in general synthetic endeavors
A small molecule activator of p300/CBP histone acetyltransferase promotes survival and neurite growth in a cellular model of Parkinson’s disease
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterised by motor and non-motor symptoms, resulting from the degeneration of nigrostriatal dopaminergic neurons and peripheral autonomic neurons. Given the limited success of neurotrophic factors in clinical trials, there is a need to identify new small molecule drugs and drug targets to develop novel therapeutic strategies to protect all neurons that degenerate in PD. Epigenetic dysregulation has been implicated in neurodegenerative disorders, while targeting histone acetylation is a promising therapeutic avenue for PD. We and others have demonstrated that histone deacetylase inhibitors have neurotrophic effects in experimental models of PD. Activators of histone acetyltransferases (HAT) provide an alternative approach for the selective activation of gene expression, however little is known about the potential of HAT activators as drug therapies for PD. To explore this potential, the present study investigated the neurotrophic effects of CTPB (N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide), which is a potent small molecule activator of the histone acetyltransferase p300/CBP, in the SH-SY5Y neuronal cell line. We report that CTPB promoted the survival and neurite growth of the SH-SY5Y cells, and also protected these cells from cell death induced by the neurotoxin 6-hydroxydopamine. This study is the first to investigate the phenotypic effects of the HAT activator CTPB, and to demonstrate that p300/CBP HAT activation has neurotrophic effects in a cellular model of PD
Romidepsin induces caspase-dependent cell death in human neuroblastoma cells
Neuroblastoma is the most common extracranial pediatric solid tumor, arising from the embryonic sympathoadrenal lineage of the neural crest, and is responsible for 15% of childhood cancer deaths. Although survival rates are good for some patients, those children diagnosed with high-risk neuroblastoma have survival rates as low as 35%. Thus, neuroblastoma remains a significant clinical challenge and the development of novel therapeutic strategies is essential. Given that there is widespread epigenetic dysregulation in neuroblastoma, epigenetic pharmacotherapy holds promise as a therapeutic approach. In recent years, histone deacetylase (HDAC) inhibitors, which cause selective activation of gene expression, have been shown to be potent chemotherapeutics for the treatment of a wide range of cancers. Here we examined the ability of the FDA-approved drug Romidepsin, a selective HDAC1/2 inhibitor, to act as a cytotoxic agent in neuroblastoma cells. Treatment with Romidepsin at concentrations in the low nanomolar range induced neuroblastoma cell death through caspase-dependent apoptosis. Romidepsin significantly increased histone acetylation, and significantly enhanced the cytotoxic effects of the cytotoxic agent 6-hydroxydopamine, which has been shown to induce cell death in neuroblastoma cells through increasing reactive oxygen species. Romidepsin was also more potent in MYCN-amplified neuroblastoma cells, which is an important prognostic marker of poor survival. This study has thus demonstrated that the FDA-approved chemotherapeutic drug Romidepsin has a potent caspase-dependent cytotoxic effect on neuroblastoma cells, whose effects enhance cell death induced by other cytotoxins, and suggests that Romidepsin may be a promising chemotherapeutic candidate for the treatment of neuroblastoma
A study of the norcaradiene-cycloheptatriene equilibrium in a series of azulenones by NMR spectroscopy; the impact of substitution on the position of equilibrium
A systematic investigation of the influence of substitution at positions C-2 and C-3 on the azulenone skeleton, based on NMR characterisation, is discussed with particular focus on the impact of the steric and electronic characteristics of substituents on the position of the norcaradiene-cycloheptatriene (NCD-CHT) equilibrium. Variable temperature (VT) NMR studies, undertaken to enable the resolution of signals for the equilibrating valence tautomers revealed, in addition, interesting shifts in the equilibrium
When stakeholder representation leads to faultlines: a study of board service performance in social enterprises
Following the growing interest in sustainability and ethics, organizations are increasingly attentive to accountability toward stakeholders. Stakeholder representation, obtained by appointing board members representing different stakeholder groups, is suggested to be a good ethical practice. However, such representation may also have nefarious implications for board functioning. Particularly, it may result in strong faultline emergence, subsequently mitigating board performance. Our study aims at understanding the process through which faultlines affect board performance, and particularly the board service role through which the board is involved in providing counsel and strategic decision-making. We study the relationship between faultlines and board service performance in the particularly relevant context of social enterprises. We find that faultline strength is negatively related to board service performance and that this relationship is mediated by board task conflict. Furthermore, our study reveals the importance of clear and shared organizational goals in attenuating the negative effects of faultlines
Roles of genetic polymorphisms in the folate pathway in childhood acute lymphoblastic leukemia evaluated by bayesian relevance and effect size analysis.
In this study we investigated whether polymorphisms in the folate pathway influenced the risk of childhood acute lymphoblastic leukemia (ALL) or the survival rate of the patients. For this we selected and genotyped 67 SNPs in 15 genes in the folate pathway in 543 children with ALL and 529 controls. The results were evaluated by gender adjusted logistic regression and by the Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) methods. Bayesian structure based odds ratios for the relevant variables and interactions were also calculated. Altogether 9 SNPs in 8 genes were associated with altered susceptibility to ALL. After correction for multiple testing, two associations remained significant. The genotype distribution of the MTHFD1 rs1076991 differed significantly between the ALL and control population. Analyzing the subtypes of the disease the GG genotype increased only the risk of B-cell ALL (p = 3.52x10(-4); OR = 2.00). The GG genotype of the rs3776455 SNP in the MTRR gene was associated with a significantly reduced risk to ALL (p = 1.21x10(-3); OR = 0.55), which resulted mainly from the reduced risk to B-cell and hyperdiploid-ALL. The TC genotype of the rs9909104 SNP in the SHMT1 gene was associated with a lower survival rate comparing it to the TT genotype (80.2% vs. 88.8%; p = 0.01). The BN-BMLA confirmed the main findings of the frequentist-based analysis and showed structural interactional maps and the probabilities of the different structural association types of the relevant SNPs especially in the hyperdiploid-ALL, involving additional SNPs in genes like TYMS, DHFR and GGH. We also investigated the statistical interactions and redundancies using structural model properties. These results gave further evidence that polymorphisms in the folate pathway could influence the ALL risk and the effectiveness of the therapy. It was also shown that in gene association studies the BN-BMLA could be a useful supplementary to the traditional frequentist-based statistical method